8.已知函數(shù)f(x)=|2x-a|+5x,a>0.
(1)若不等式f(x)≤0解集為{x|x≤-1},求a的值;
(2)若不等式f(x)≥4x+1對x∈R恒成立,求實數(shù)a的取值范圍.

分析 (1)不等式f(x)≤0,即|2x-a|≤-5x,由x≤-1,可得5x≤2x-a≤-5x,a>0,解出即可得出.
(2)不等式f(x)≥4x+1化為:|2x-a|≥1-x,由不等式f(x)≥4x+1對x∈R恒成立,即|2x-a|≥1-x,對于任意實數(shù)成立,可得$1≤\frac{a}{2}$,解出即可得出.

解答 解:(1)不等式f(x)≤0,即|2x-a|≤-5x,∵x≤-1,∴5x≤2x-a≤-5x,a>0,
解得x$≤\frac{a}{7}$,且x≤$-\frac{a}{3}$,∴$-\frac{a}{3}$=-1,解得a=3.
(2)不等式f(x)≥4x+1化為:|2x-a|≥1-x,
∵不等式f(x)≥4x+1對x∈R恒成立,
∴|2x-a|≥1-x,對于任意實數(shù)成立,∴$1≤\frac{a}{2}$,解得a≥2.
∴實數(shù)a的取值范圍是[2,+∞).

點評 本題考查了絕對值不等式的解法、恒成立問題的等價轉(zhuǎn)化方法,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{e^x}{x}$-$\frac{{aln\frac{x}{2}}}{x^2}$+x,曲線y=f(x)在(2,f(2))處切線的斜率為$\frac{e^2}{4}$.(e為自然對數(shù)的底數(shù))
(Ⅰ)求a的值;
(Ⅱ)證明:f(x)>e+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=lnx-\frac{1}{x},g(x)=x+\frac{1}{x}$.
( I)證明:函數(shù)f(x)在[1,e]上存在唯一的零點;
(Ⅱ)若g(x)≥af(x)在[1,e]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了調(diào)查某中學(xué)學(xué)生在周日上網(wǎng)的瞬間,隨機對100名男生和100名女生進行了不記名的問卷調(diào)查,得到了如下統(tǒng)計結(jié)果:
表1:男生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
人 數(shù)525302515
表2:女生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間 (分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
人數(shù)1020402010
(1)若該中學(xué)共有女生600人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(2)完成表3的2×2列聯(lián)表,并回答能否有90%的把握認為“學(xué)生周日上網(wǎng)時間與性別有關(guān)”?
(3)從表3的男生“上網(wǎng)時間少于60分鐘”和“上網(wǎng)時間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個容量為5的樣本,再從中任取2人,求至少有一人上網(wǎng)時間不少于60分鐘的概率.
表3
上網(wǎng)時間少于60分鐘上網(wǎng)時間不少于60分鐘合計
男生
女生
合計
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|x|+|x+1|.
(I)?m∈R,使得m2+2m+f(t)=0成立,求實數(shù)t的取值范圍;
(Ⅱ)設(shè)g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,求函數(shù)|g(x)|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)m等于|a|,|b|和1中最大的一個,當|x|>m時,求證:|$\frac{a}{x}$+$\frac{{x}^{2}}$|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=PA=4,A點在PD上的射影為G點,E點在AB上,平面PCE⊥平面PCD.
(1)求證:AG⊥平面PCD;
(2)求直線PD與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列各函數(shù)中在(0,1)上為增函數(shù)的是(  )
A.y=log${\;}_{\frac{1}{2}}$(x+1)B.y=log2$\sqrt{{x}^{2}-1}$
C.y=log3$\frac{1}{x}$D.y=log${\;}_{\frac{1}{3}}$(x2-4x+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,F(xiàn)1,F(xiàn)2是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右兩個焦點.若直線y=x與雙曲線C交于P、Q兩點,且四邊形PF1QF2為矩形,則雙曲線的離心率為( 。
A.2+$\sqrt{2}$B.2+$\sqrt{6}$C.$\sqrt{2+\sqrt{2}}$D.$\sqrt{2+\sqrt{6}}$

查看答案和解析>>

同步練習(xí)冊答案