3.已知函數(shù)f(x)=|x|+|x+1|.
(I)?m∈R,使得m2+2m+f(t)=0成立,求實(shí)數(shù)t的取值范圍;
(Ⅱ)設(shè)g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,求函數(shù)|g(x)|的值域.

分析 (I)?m∈R,使得m2+2m+f(t)=0成立,f(t)≤1,再分類討論,即可求實(shí)數(shù)t的取值范圍;
(Ⅱ)設(shè)g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,|g(x)|=$\left\{\begin{array}{l}{\frac{1}{{2}^{x}},0<x<\frac{1}{2}}\\{1,-1≤x≤0}\\{-2x-1,x<-1}\end{array}\right.$,作出|g(x)|的圖象,即可求函數(shù)|g(x)|的值域.

解答 解:(I)由題意,f(t)=$\left\{\begin{array}{l}{-2t-1,t<-1}\\{1,-1≤t≤0}\\{2t+2,t>0}\end{array}\right.$,
?m∈R,使得m2+2m+f(t)=0成立,
∴△=4-4f(t)≥0,
∴f(t)≤1,
t<-1時(shí),f(t)=-2t-1≤1,∴t≥-1,不合題意,舍去;
-1≤t≤0時(shí),f(t)=1,此時(shí)f(t)≤1恒成立;
t>0時(shí),f(t)=2t+1≤1,∴t≤0,不合題意,舍去;
綜上所述,t的取值范圍為[-1,0];
(Ⅱ)g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,∴|g(x)|=$\left\{\begin{array}{l}{\frac{1}{{2}^{x}},0<x<\frac{1}{2}}\\{1,-1≤x≤0}\\{-2x-1,x<-1}\end{array}\right.$.
作出|g(x)|的圖象,

則函數(shù)|g(x||的值域?yàn)椋?\frac{\sqrt{2}}{2}$,+∞).

點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法,考查函數(shù)的值域,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=ex+a,g(x)=-x2-4x+2,設(shè)函數(shù)h(x)=$\left\{\begin{array}{l}f(x),f(x)≤g(x)\\ g(x),f(x)>g(x)\end{array}$,若函數(shù)h(x)的最大值為2,則a=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.A,B二面角α-l-β的棱l上兩點(diǎn),P∈α,Q∈β,且∠PAB=∠ABQ=$\frac{π}{3}$,PA=QB=$\frac{1}{2}$AB=2,PQ=3,則二面角α-l-β的余弦值是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某研究性學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如表
使用智能手機(jī)不使用智能手機(jī)合計(jì)
學(xué)習(xí)成績(jī)優(yōu)秀4812
學(xué)習(xí)成績(jī)不優(yōu)秀16218
合計(jì)201030
附表:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
經(jīng)計(jì)算K2=10,則下列選項(xiàng)正確的是:( 。
A.有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
B.有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
C.有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
D.有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)).在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)中,曲線C的方程為ρ2cos2θ+4ρ2sin2θ=4.直線l交曲線C與A、B兩點(diǎn).
(Ⅰ)求|AB|;
(Ⅱ)若點(diǎn)P為曲線C上任意一點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=|2x-a|+5x,a>0.
(1)若不等式f(x)≤0解集為{x|x≤-1},求a的值;
(2)若不等式f(x)≥4x+1對(duì)x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=x2-3x+lnx在x=$\frac{1}{2}$處取得極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.0<α<2π,且α終邊上一點(diǎn)為P(cos$\frac{π}{15}$,-sin$\frac{π}{15}$),則α=$\frac{29π}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知關(guān)于x的一元二次方程3x2-2x+k=0,根據(jù)下列條件,分別求出k的范圍:
(1)方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)方程有兩個(gè)相等的實(shí)數(shù)根;
(3)方程有實(shí)數(shù)根;
(4)方程無(wú)實(shí)數(shù)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案