20.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=PA=4,A點在PD上的射影為G點,E點在AB上,平面PCE⊥平面PCD.
(1)求證:AG⊥平面PCD;
(2)求直線PD與平面PCE所成角的正弦值.

分析 (1)先證明出CD⊥平面PAD,進(jìn)而可推斷出CD⊥AG,然后利用AG⊥PD,根據(jù)線面垂直的判定定理證明出結(jié)論.
(2)建立坐標(biāo)系,先求出面PCE的法向量,再利用向量的夾角公式求出直線PD與平面PCE所成角的正弦值.

解答 (1)證明:∵CD⊥AD,CD⊥PA,AD∩PA=A
∴CD⊥平面PAD∴CD⊥AG,
又PD⊥AG,CD∩PD=D
∴AG⊥平面PCD;
(2)解:如圖建立坐標(biāo)系,則P(0,0,3),C(4,4,0),D(0,4,0),G(0,2,2),

設(shè)E(a,0,0),由(1)知:$\overrightarrow{AG}=(0,2,2)$是面PCD的法向量,
又$\overrightarrow{PC}=(4,4,-4)$,$\overrightarrow{EC}=(4-a,4,0)$,設(shè)面PCE的法向量為$\overrightarrow n=(x,y,z)$,
則$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{PC}=4x+4y-4z=0\\ \overrightarrow n•\overrightarrow{EC}=(4-a)x+4y=0\end{array}\right.$,取x=4,得:$\overrightarrow n=(4,a-4,a)$
因平面PCE⊥平面PCD,$\overrightarrow{AG}•\overrightarrow n=0+2({a-4})+2a=0$,∴a=2,即:$\overrightarrow n=(4,-2,2)$
又$\overrightarrow{PD}=(0,4,-4)$,設(shè)PD與面PCE所成的角為θ,
則:$sinθ=\frac{{|{\overrightarrow{PD}•\overrightarrow n}|}}{{|{\overrightarrow{PD}}|•|{\overrightarrow n}|}}=\frac{16}{{4\sqrt{2}•2\sqrt{6}}}=\frac{{\sqrt{3}}}{3}$.

點評 本題主要考查了線面垂直的判定定理的運用,考查線面角,考查了學(xué)生空間觀察和分析的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知{an}是一個公差大于0的等差數(shù)列,且滿足a2a3=15,a1+a4=8.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{${\frac{b_n}{2^n}}\right.$}的前n項和為Tn且Tn=$\frac{{{a_n}+1}}{2}$(n∈N+),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某研究性學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對學(xué)習(xí)的影響,部分統(tǒng)計數(shù)據(jù)如表
使用智能手機(jī)不使用智能手機(jī)合計
學(xué)習(xí)成績優(yōu)秀4812
學(xué)習(xí)成績不優(yōu)秀16218
合計201030
附表:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
經(jīng)計算K2=10,則下列選項正確的是:(  )
A.有99.5%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)有影響
B.有99.5%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)無影響
C.有99.9%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)有影響
D.有99.9%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)無影響

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|2x-a|+5x,a>0.
(1)若不等式f(x)≤0解集為{x|x≤-1},求a的值;
(2)若不等式f(x)≥4x+1對x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=x2-3x+lnx在x=$\frac{1}{2}$處取得極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求使不等式|$\frac{3n}{n+1}$-3|<$\frac{1}{100}$成立的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.0<α<2π,且α終邊上一點為P(cos$\frac{π}{15}$,-sin$\frac{π}{15}$),則α=$\frac{29π}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(4x)=x2+x+1,則f(-4)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,AA1=AB=BC=$\frac{3}{2}$AC,D是AC的中點.
(1)求點B1到平面A1BD的距離.
(2)求二面角A-A1B-D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案