如圖是2011年在某市舉行的紅歌大賽上,七位評委為某歌手打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為
 
考點:莖葉圖
專題:計算題,概率與統(tǒng)計
分析:由莖葉圖知去掉一個最高分和一個最低分后,這組數(shù)據(jù)是84,84,86,84,87,做出這組數(shù)據(jù)的平均數(shù),再利用方差公式做出這組數(shù)據(jù)的方差.
解答: 解:由莖葉圖知這組數(shù)據(jù)是79,84,84,86,84,87,93
∴去掉一個最高分和一個最低分后,這組數(shù)據(jù)的平均數(shù)是
1
5
(84+84+86+84+87)=85,
這組數(shù)據(jù)的方差是
1
5
(1+1+1+1+4)=1.6
即這組數(shù)據(jù)的平均數(shù)是85,方差是1.6,
故答案為:85,1.6.
點評:本題考查莖葉圖和數(shù)據(jù)的平均數(shù)和方差,本題解題的關(guān)鍵是看出所有的數(shù)據(jù),正確利用公式,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P(4,-1),F(xiàn)為拋物線y2=8x的焦點,M為此拋物線上的點,且使|MP|+|MF|的值最小,則M點的坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
①圓的周長與該圓的半徑具有相關(guān)關(guān)系;
②線性回歸方程對應(yīng)的直線y=bx+a至少經(jīng)過其樣本數(shù)據(jù)點(x1,y1)(x2,y2),…(xn,yn)中的一個點;③在殘差圖中,殘差點分布的代狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
④在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好.
A、①③④B、③④
C、②③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序框圖,運行相應(yīng)的程序,輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中的抽查結(jié)果和從B類工人中的抽查結(jié)果分別如表1和表2.
表1
生產(chǎn)能力分組[100,110)[110,120)[120,130)[130,140)[140,150]
人數(shù)48x53
表2
生產(chǎn)能力分組[110,120)[120,130)[130,140)[140,150]
人數(shù)6y3618
(Ⅰ)先確定x,y,再在圖中完成表1和表2的頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結(jié)論)

(Ⅱ)分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),g(x),F(xiàn)(x)的定義域都為R,且在定義域內(nèi)f(x)為增函數(shù),g(x)為減函數(shù),F(xiàn)(x)=mf(x)+ng(x)(m,n為常數(shù),F(xiàn)(x)不是常函數(shù)),在下列哪種情況下,F(xiàn)(x)在定義域內(nèi)一定是單調(diào)函數(shù)( 。
A、m+n>0B、m+n<0
C、mn>0D、mn<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的零點:
(1)f(x)=-8x2+7x+1;
(2)f(x)=ln(x-
1
2
);
(3)f(x)=ex-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=3,cosA=-
1
2
,則△ABC的外接圓半徑是( 。
A、
1
2
B、
3
2
C、2
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y2=x在點P(1,1)處切線方程
 

查看答案和解析>>

同步練習(xí)冊答案