6.設(shè)命題P:?n∈N,f(n)≤n,則¬p是( 。
A.?n∉N,f(n)>nB.?n0∈N,f(n0)>n0C.?n0∈N,f(n0)≤n0D.?n∈N,f(n)>n

分析 直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,所以,命題P:?n∈N,f(n)≤n,則¬p是?n0∈N,f(n0)>n0
故選:B.

點評 本題考查命題的否定,全稱命題與特稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知一次函數(shù)f(x)滿足f(x+1)+f(x)=2x+3對任意實數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)是定義在區(qū)間[-1,1]上的偶函數(shù),當(dāng)x∈[0,1]時,g(x)=f(x),求g(x)的
解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.橢圓2x2+4y2=1的長軸長等于( 。
A.4B.2$\sqrt{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3,(2$\overrightarrow a$-3$\overrightarrow b$)•(2$\overrightarrow a$+$\overrightarrow b$)=13.
(1)求$|{\overrightarrow a-\overrightarrow b}$|;
(2)求向量$\overrightarrow a$在$\overrightarrow a-\overrightarrow b$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若$\overrightarrow{OA}$=(2,8),$\overrightarrow{OB}$=(-7,2),則$\overrightarrow{AB}$=(-9,-6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱錐A-BCD中,AB=AC=AD=BC=CD=4,BD=4$\sqrt{2}$,E,F(xiàn)分別為AC,CD的中點,G為線段BD上一點,且BE∥平面AGF.
(Ⅰ)求BG的長;
(Ⅱ)當(dāng)直線BE∥平面AGF時,求四棱錐A-BCFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)寫出函數(shù)f(x)的解析式及x0的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若cos(75°+α)=$\frac{1}{3}$,則cos(30°-2α)的值為( 。
A.$\frac{4\sqrt{2}}{9}$B.-$\frac{4\sqrt{2}}{9}$C.$\frac{7}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(-4,3)是角α終邊上的一點,則sin(π-α)=(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案