17.某市16個交通路段中,在早高峰期間與7個路段比較擁堵,現(xiàn)從中任意選10個路段,用X表示這10個路段中交通比較擁堵的路段數(shù),則P(X=4)=( 。
A.$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{10}}$B.$\frac{{C}_{10}^{4}{•C}_{10}^{6}}{{C}_{16}^{10}}$
C.$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{7}}$D.$\frac{{C}_{16}^{7}{•C}_{16}^{3}}{{C}_{16}^{10}}$

分析 由題意本題是一個超幾何分布的問題,P(X=4)即取出的10個村莊中交通不方便的村莊數(shù)為四,由公式算出概率即可

解答 解:由題意P(X=4)=$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{10}}$,
故選:A.

點評 本題考查超幾何分布概率模型,解本題的關鍵是能歸納出本題的概率模型以及概率的計算公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2a•sinωxcosωx+2$\sqrt{3}$cos2ωx-$\sqrt{3}$+1(a>0,ω>0)的最大值為3,最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(Ⅱ)若f(θ)=$\frac{7}{3}$,求sin(4θ+$\frac{π}{6}$)的值.
(Ⅲ)若存在區(qū)間[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6個零點,在滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若函數(shù)f(x)=$\frac{4x}{{{x^2}+1}}$在區(qū)間[m,m+1]上是單調(diào)遞增函數(shù),則實數(shù)m的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個焦點與拋物線y2=16x的焦點重合,且雙曲線的離心率等于2,則該雙曲線的漸近線方程為(  )
A.$y=±\sqrt{3}x$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\sqrt{2}x$D.y=±2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在數(shù)列{an}中,設ai=2m(i∈N*,3m-2≤i<3m+1,m∈N*),Si=ai+ai+3+ai+6+ai+9+ai+12,則滿足Si∈[1000,3000]的i的值為16或17或18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知等比數(shù)列{an}滿足a1=3,a1+a3+a5=21,則a3+a5+a7=42.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在直三棱柱ABC-A1B1C1中,AB=2$\sqrt{2}$,AC=2$\sqrt{3}$,AA1=1,∠BAC=90°,D為線段BC的中點.
(1)求異面直線B1D與AC所成角的大;
(2)求二面角D-A1B1-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在三棱柱ABC-A1B1C1中,正方形AA1B1B的邊長是整數(shù),點H是其中心,C1H⊥平面AA1B1B,且C1H=$\sqrt{6}$,三棱柱ABC-A1B1C1的側(cè)面積為4($\sqrt{7}$+1).
(Ⅰ)求AA1;
(Ⅱ)求二面角A-BC-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知正方體ABCD-A1B1C1D1的棱長a=2,P為該正方體的內(nèi)切球的表面上的動點,且始終有AP⊥A1C,則動點P的軌跡的長度為(  )
A.$\frac{{\sqrt{3}π}}{3}$B.$\frac{{\sqrt{6}π}}{3}$C.$\frac{{2\sqrt{3}π}}{3}$D.$\frac{{2\sqrt{6}π}}{3}$

查看答案和解析>>

同步練習冊答案