設x,y滿足約束條件
6x-2y-3≤0
x-y+
1
2
≥0
x≥0,y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為6,則
1
2a
+
3
b
的最小值為
 
考點:簡單線性規(guī)劃
專題:數(shù)形結合,不等式的解法及應用
分析:由約束條件作出可行域,數(shù)形結合得到最優(yōu)解,結合目標函數(shù)的最大值得到
a
6
+
b
4
=1
,然后利用基本不等式求得
1
2a
+
3
b
的最小值.
解答: 解:由約束條件
6x-2y-3≤0
x-y+
1
2
≥0
x≥0,y≥0
作出可行域如圖,

化目標函數(shù)z=ax+by為y=-
a
b
x+
z
b
,
聯(lián)立
x-y+
1
2
=0
6x-2y-3=0
,解得:C(1,
3
2
).
由圖可知,當直線y=-
a
b
x+
z
b
過C(1,
3
2
)時目標函數(shù)有最大值為6.
即a+
3
2
b
=6.
a
6
+
b
4
=1

1
2a
+
3
b
=(
1
2a
+
3
b
)•(
a
6
+
b
4
)
=
1
12
+
3
4
+
b
8a
+
a
2b
5
6
+2
b
8a
a
2b
=
4
3
(當且僅當b=2a時等號成立).
故答案為:
4
3
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,訓練了基本不等式求最值,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

直線(a+2)x+(1-a)y=a•a(a>0),與直線(a-1)x+(2a+3)y+2=0垂直,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1的兩個焦點為F1(-5,0),F(xiàn)2(5,0),其上一點M滿足MF1-MF2=-8,則該雙曲線的一條漸近線方程為(  )
A、4x+3y=0
B、4x-5y=0
C、3x-4y=0
D、5x+3y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀成績后,得到如下不完整的列聯(lián)表:
優(yōu)秀非優(yōu)秀合計
甲班10
乙班30
合計105
已知在全部105人中隨機抽取1人其成績?yōu)閮?yōu)秀的概率是
2
7

(1)請完成上面的列聯(lián)表;
(2)根據列聯(lián)表的數(shù)據,若按95%的可靠性要求,能否認為成績與班級有關系?;
(3)若按下面的方法從甲班優(yōu)秀的學生中抽取1人;把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號,且規(guī)定點數(shù)之和為12時抽取人序號為2.試求抽到6或10號的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=Acos(3x+φ)(|φ|>0),若f(
π
2
)=-
2
3
,且當x=
4
時,f(x)取最大值,則f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀框圖,輸出的結果c=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知c=2(b-acosC)
(1)求∠A的大小
(2)若△ABC的面積為
3
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
log3x(x>0)
log
1
3
(-x)(x<0)
,若f(a)>f(-a),則實數(shù)a的取值范圍是( 。
A、(-1,0)∪(1,+∞)
B、(-∞,-1)
C、(1,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個空間幾何體的三視圖如圖所示,其中正視圖為等腰直角三角形,側視圖與俯視圖為正方形,則該幾何體的表面積為
 

查看答案和解析>>

同步練習冊答案