【題目】已知函數(shù).

(1)判斷函數(shù)的單調(diào)性;

(2)當上的最小值是時,求m的值.

【答案】(1)見解析;(2)

【解析】

(1)對求導,得=,按兩種情況進行討論單調(diào)性即可;

2)由(1)知,按兩種情況進行求上的最小值,,列方程解出即可.

(1)依題意,.

時,,則上單調(diào)遞增;

時,由解得,由解得.

故當時,函數(shù)上單調(diào)遞增;當時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

(2)由(1)知,當時,函數(shù)上單調(diào)遞增,

,即,矛盾.

時,由(1)得是函數(shù)上的極小值點.

①當時,函數(shù)上單調(diào)遞增,

則函數(shù)的最小值為,即,符合條件.

②當時,函數(shù)上單調(diào)遞減,

則函數(shù)的最小值為,即,矛盾.

③當時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,則函數(shù)的最小值為,即.

),則,

上單調(diào)遞減,而,∴上沒有零點,

即當時,方程無解.

綜上所述:=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關注程度,某機構隨機抽取了年齡在15-75歲之間的100人進行調(diào)查, 經(jīng)統(tǒng)計“青少年”與“中老年”的人數(shù)之比為9:11

關注

不關注

合計

青少年

15

中老年

合計

50

50

100

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認為關注“一帶一路”是否和年齡段有關?

(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調(diào)查.在這9人中再選取3人進行面對面詢問,記選取的3人中關注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學期望.

附:參考公式,其中

臨界值表:

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)若在區(qū)間上有極值,求實數(shù)的取值范圍;

(Ⅱ)若有唯一的零點,試求的值.(注:為取整函數(shù),表示不超過的最大整數(shù),如;以下數(shù)據(jù)供參考:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),點在曲線上,且曲線在點處的切線與直線垂直.

(1)求,的值;

(2)如果當時,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃在辦公大廳建一面長為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價為6400元,一塊長為米的玻璃造價為元.假設所有立柱的粗細都忽略不計,且不考慮其他因素,記總造價為元(總造價=立柱造價+玻璃造價).

(1)求關于的函數(shù)關系式;

(2)當時,怎樣設計能使總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關關系

B. 回歸直線過樣本點的中心(,

C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣sin2x+sinxcosx+,x∈[0,]

(1)求函數(shù)f(x)的值域;

(2)若f()=,α∈(0,π),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有關命題的說法錯誤的是(

A.pq為假命題,則pq均為假命題

B.x1”x23x+20”的充分不必要條件

C.命題x23x+20,則x1”的逆否命題為:x≠1,則x23x+2≠0”

D.對于命題px≥02x3,則¬Px0,2x≠3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某地出土的一種“釘”是由四條線段組成,其結(jié)構能使它任意拋至水平面后,總有一端所在的直線豎直向上.并記組成該“釘”的四條等長的線段公共點為,釘尖為

(1)判斷四面體的形狀,并說明理由;

(2)設,當在同一水平面內(nèi)時,求與平面所成角的大。ńY(jié)果用反三角函數(shù)值表示);

(3)若該“釘”著地后的四個線段根據(jù)需要可以調(diào)節(jié)與底面成角的大小,且保持三個線段與底面成角相同,若,,問為何值時,的體積最大,并求出最大值.

查看答案和解析>>

同步練習冊答案