精英家教網 > 高中數學 > 題目詳情
16.命題“如果a=4,那么方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1表示焦點在x軸上的橢圓”的逆命題(  )
A.是真命題B.是假命題C.沒有逆命題D.無法確定真假

分析 寫出原命題的逆命題,進而根據橢圓的標準方程,判斷真假.

解答 解:“如果a=4,那么方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1表示焦點在x軸上的橢圓”的逆命題是
“如果方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1表示焦點在x軸上的橢圓,那么a=4”,
程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1表示焦點在x軸上的橢圓?a2>4?a<-2,或a>2,
故“如果方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1表示焦點在x軸上的橢圓,那么a=4”是假命題,
故選:B.

點評 本題以命題的真假判斷與應用為載體,考查了四種命題,橢圓的標準方程,難度中檔.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

6.雙曲線與橢圓4x2+y2=64有公共的焦點,它們的離心率互為倒數,求雙曲線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.圓(x-2)2+y2=4的圓心坐標和半徑分別為( 。
A.(0,2),2B.(2,0),2C.(-2,0),4D.(2,0),4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.若loga2=m,loga3=n,(a>0且a≠1)則a2m+n=12.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.某公司慶;顒有鑿募、乙、丙等5名志愿者中選2名擔任翻譯,2名擔任向導,還有1名機動人員,為來參加活動的外事人員提供服務,并且翻譯和向導都必須有一人選自甲、乙、丙,則不同的選法有( 。
A.20B.22C.24D.36

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.雙曲線的離心率為2,則雙曲線的兩條漸近線所成的銳角是60°.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.函數f(x)=$\frac{2sinxco{s}^{2}x}{1+sinx}$的值域為(-4,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.函數$y=\sqrt{sin(2x-\frac{π}{4})}$的定義域是( 。
A.$\left\{{x|\frac{π}{4}+2kπ≤x≤\frac{5π}{4}+2kπ,k∈Z}\right\}$B.$\left\{{x|\frac{π}{8}+kπ≤x≤\frac{5π}{8}+kπ,k∈Z}\right\}$
C.$\left\{{x|\frac{π}{8}+2kπ≤x≤\frac{5π}{8}+2kπ,k∈Z}\right\}$D.$\left\{{x|\frac{π}{4}+kπ≤x≤\frac{5π}{4}+kπ,k∈Z}\right\}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.若A={x|2<x<3},B={x|x2-4ax+3a2<0},且A⊆B則實數a的取值范圍是( 。
A.1<a<2B.1≤a≤2C.1<a<3D.1≤a≤3

查看答案和解析>>

同步練習冊答案