將5名學(xué)生分到A,B,C三個宿舍,每個宿舍至少1人至多2人,其中學(xué)生甲不到A宿舍的不同分法有(  )

A.18種 B.36種 C.48種 D.60種

 

D

【解析】由題意知A,B,C三個宿舍中有兩個宿舍分到2人,另一個宿舍分到1人.若甲被分到B宿舍:(1)A中2人,B中1人,C中2人,有=6種分法;

(2)A中1人,B中2人,C中2人,有=12種分法;

(3)A中2人,B中2人,C中1人,有=12種分法,

即甲被分到B宿舍的分法有30種,同樣甲被分到C宿舍的分法也有30種,所以甲不到A宿舍一共有60種分法,故選D.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-7離散型隨機(jī)變量及分布列(解析版) 題型:選擇題

一袋中有5個白球,3個紅球,現(xiàn)從袋中往外取球,每次任取一個記下顏色后放回,直到紅球出現(xiàn)10次時停止,設(shè)停止時共取了ξ次球,則P(ξ=12)=(  )

A.()10()2 B.()9()2×

C.()9()2 D.()9()2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-4隨機(jī)事件的概率(解析版) 題型:解答題

已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標(biāo)著號碼1,另一個球標(biāo)著號碼2.現(xiàn)從A、B、C三個箱子中各摸出1個球.

(1)若用數(shù)組(x,y,z)中的x,y,z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組(x,y,z)的所有情形,并回答一共有多少種;

(2)如果請您猜測摸出的這三個球的號碼之和,猜中有獎,那么猜什么數(shù)獲獎的可能性最大?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-3二項式定理(解析版) 題型:填空題

二項式(2)6的展開式中所有有理項的系數(shù)和等于________.(用數(shù)字作答)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-3二項式定理(解析版) 題型:選擇題

在()24的展開式中,x的冪指數(shù)是整數(shù)的項共有(  )

A.3項 B.4項 C.5項 D.6項

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-2排列與組合(解析版) 題型:填空題

在小語種提前招生考試中,某學(xué)校獲得5個推薦名額,其中俄語2個,日語2個,西班牙語1個,日語和俄語都要求有男生參加.學(xué)校通過選拔定下3男2女共5名推薦對象,則不同的推薦方法共有________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-2排列與組合(解析版) 題型:選擇題

2013年8月31日,第十二屆全民運動會在遼寧省舉行.某運動隊有男運動員6名,女運動員4名,選派5人參加比賽,則至少有1名女運動員的選派方法有(  )

A.128種 B.196種 C.246種 D.720種

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):1-1集合的概念與運算(解析版) 題型:填空題

已知集合A={(x,y)|x2+y2=1},B={(x,y)||x|+|y|=λ},若A∩B≠∅,則實數(shù)λ的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)理配套特訓(xùn):10-9離散型隨機(jī)變量均值方差和正態(tài)分布(解析版) 題型:選擇題

體育課的排球發(fā)球項目考試的規(guī)則是:每位學(xué)生最多可發(fā)球3次,一旦發(fā)球成功,則停止發(fā)球,否則一直發(fā)到3次為止.設(shè)學(xué)生一次發(fā)球成功的概率為p(p≠0),發(fā)球次數(shù)為X,若X的數(shù)學(xué)期望E(X)>1.75,則p的取值范圍是(  )

A.(0,) B.(,1) C.(0,) D.(,1)

 

查看答案和解析>>

同步練習(xí)冊答案