15.命題“?x∈R,x2≠-1”的否定是( 。
A.?x∉R,x2=-1B.?x∈R,x2=-1C.?x∉R,x2=-1D.?x∈R,x2=-1

分析 根據(jù)全稱命題的否定是特稱命題即可得到結(jié)論.

解答 解:∵“?x∈R,x2≠-1”是全稱命題,
∴根據(jù)全稱命題的否定是特稱命題得命題的否定是:?x∈R,x2=-1.
故選:D.

點(diǎn)評 本題主要考查含有量詞的命題的否定,全稱命題的否定的特稱命題,特稱命題的否定是全稱命題,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(x,3),若$\overrightarrow{a}$與$\overrightarrow$共線,則|$\overrightarrow{a}$|=2;若$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow$|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)向量$\overrightarrow a$=(1,m),$\overrightarrow b$=(m,4),若$\overrightarrow a$∥$\overrightarrow b$,則實(shí)數(shù)m的值是( 。
A.2B.-2C.0D.-2或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某中學(xué)在運(yùn)動會期間舉行定點(diǎn)投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設(shè)每次投籃投中與否是相互獨(dú)立的.已知小明每次投籃投中的概率都是 $\frac{1}{3}$.
(1)求小明在4次投籃中有三次投中的概率;
(2)求小明在4次投籃后的總得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

過點(diǎn)、點(diǎn)且圓心在直線上的圓的方程是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx,g(x)=ex
(1)若函數(shù)φ(x)=f(x)-$\frac{x+1}{x-1}$,求函數(shù)φ(x)的單調(diào)區(qū)間;
(2)設(shè)直線l為函數(shù)f(x)的圖象上一點(diǎn)A(x0,f(x0))處的切線,在區(qū)間(1,+∞)上是否存在x0使得直線l與曲線y=g(x)相切,若存在,求出x0的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-1,n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2a2n,求數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}是公差為1,各項(xiàng)均為正數(shù)的等差數(shù)列,若1,a1,a3成等比數(shù)列,則過點(diǎn)P(2,a6)和Q(a5,8)的直線的斜率是( 。
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$-\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}中a1=19,a4=13,Sn為{an}的前n項(xiàng)和.
(Ⅰ)求通項(xiàng)an及Sn;
(Ⅱ)令cn=bn-an,且數(shù)列{cn}是前三項(xiàng)為x,3x+3,6x+6的等比數(shù)列,求bn

查看答案和解析>>

同步練習(xí)冊答案