分析 (1)由(1+i)z=1-3i,得$z=\frac{1-3i}{1+i}$,然后由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)z得答案;
(2)把復(fù)數(shù)z代入(1+ai)z化簡,再由已知條件列出方程組,求解可得答案;
(3)由復(fù)數(shù)z求出$\overline{z}$,然后代入復(fù)數(shù)$\frac{\overline{z}}{z+1}$化簡,再由復(fù)數(shù)求模公式計(jì)算得答案.
解答 解:(1)由(1+i)z=1-3i,
得$z=\frac{1-3i}{1+i}$=$\frac{(1-3i)(1-i)}{(1+i)(1-i)}=\frac{-2-4i}{2}=-1-2i$,
∴復(fù)數(shù)z的虛部為:-2;
(2)(1+ai)z=(1+ai)(-1-2i)=2a-1-(2+a)i,
∵復(fù)數(shù)(1+ai)z是純虛數(shù),
∴$\left\{\begin{array}{l}{2a-1=0}\\{-(2+a)≠0}\end{array}\right.$,
解得a=$\frac{1}{2}$.
∴實(shí)數(shù)a的值為:$\frac{1}{2}$;
(3)由z=-1-2i,
得$\overline{z}=-1+2i$.
則$\frac{\overline{z}}{z+1}$=$\frac{-1+2i}{-1-2i+1}=\frac{2i(-1+2i)}{-2i•2i}=\frac{-4-2i}{4}$=$-1-\frac{1}{2}i$,
∴|z|=$\sqrt{(-1)^{2}+(-\frac{1}{2})^{2}}=\frac{\sqrt{5}}{2}$.
∴復(fù)數(shù)$\frac{\overline{z}}{z+1}$的模為:$\frac{\sqrt{5}}{2}$.
點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,考查了復(fù)數(shù)模的求法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | 3 | D. | -1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{13}-1}{2}$ | B. | $\frac{1+\sqrt{13}}{2}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\frac{\sqrt{14}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com