分析 橢圓C1的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,離心率e1=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$.雙曲線C2的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,離心率e2=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$.利用C1與C2的離心率之積為$\frac{\sqrt{3}}{2}$,即可得出.
解答 解:橢圓C1的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,離心率e1=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$.
雙曲線C2的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,離心率e2=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$.
∵C1與C2的離心率之積為$\frac{\sqrt{3}}{2}$,
∴$\sqrt{1-\frac{^{2}}{{a}^{2}}}$×$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{2}$.
∴$1-\frac{^{4}}{{a}^{4}}$=$\frac{3}{4}$,解得$\frac{a}=\frac{1}{\sqrt{2}}$.
∴C2的漸近線方程為$x±\sqrt{2}y=0$.
故答案為:$x±\sqrt{2}y=0$.
點評 本題考查了橢圓與雙曲線的標準方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 11 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直角三角形 | B. | 鈍角三角形 | C. | 銳角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{3}{5}$ | B. | $-\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{19}{43}$ | B. | $\frac{17}{40}$ | C. | $\frac{9}{20}$ | D. | $\frac{27}{50}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com