A. | 4 | B. | 5 | C. | 6 | D. | 7 |
分析 已知式子變形可判數(shù)列{an}是公比為3的等比數(shù)列,可得bn=$\frac{n}{2n+1}$,由b1,bm,bt成等比數(shù)列可得$\frac{3}{t}$=$\frac{-2{m}^{2}+4m+1}{{m}^{2}}$,由$\frac{3}{t}$>0可得-2m2+4m+1>0,解不等式結(jié)合m題意可得m的值,進(jìn)而可得t值,可得答案.
解答 解:∵an+12=3an2+2anan+1,
∴(an+1+an)(an+1-3an)=0,
又an>0,∴an+1-3an=0,即an+1=3an,
∴數(shù)列{an}是公比為3的等比數(shù)列.
又a1=2,∴數(shù)列{an}的通項(xiàng)公式為an=3n,
∴bn=$\frac{n{a}_{n}}{(2n+1)•{3}^{n}}$=$\frac{n}{2n+1}$,
∵b1,bm,bt成等比數(shù)列,
∴(bm)2=b1•bt,即($\frac{m}{2m+1}$)2=$\frac{1}{3}$•$\frac{t}{2t+1}$,
∴$\frac{{m}^{2}}{4{m}^{2}+4m+1}$=$\frac{t}{6t+3}$,∴$\frac{6t+3}{t}$=$\frac{4{m}^{2}+4m+1}{{m}^{2}}$,
∴$\frac{3}{t}$=$\frac{4{m}^{2}+4m+1}{{m}^{2}}$-6=$\frac{-2{m}^{2}+4m+1}{{m}^{2}}$,
由$\frac{3}{t}$>0可得$\frac{-2{m}^{2}+4m+1}{{m}^{2}}$>0,
∴-2m2+4m+1>0,解得:1-$\frac{\sqrt{6}}{2}$<m<1+$\frac{\sqrt{6}}{2}$.
又m∈N*,且m>1,∴m=2,此時(shí)t=12.
故當(dāng)且僅當(dāng)m=2且t=12.使得b1,bm,bt成等比數(shù)列,
此時(shí)$\frac{t}{m}$=6,
故選:C.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法、等比中項(xiàng)的性質(zhì),由m,n的關(guān)系得到關(guān)于m的不等式求出m的范圍是解決問題的關(guān)鍵,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{4}{3}$)∪(2,+∞) | B. | (-$\frac{4}{3}$,2) | C. | (-∞,$\frac{4}{3}$)∪(2,+∞) | D. | ($\frac{4}{3}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100 | B. | 120 | C. | 300 | D. | 600 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com