5.已知數(shù)列{an}滿足a1=1,an+1+(-1)nan=2n,其前n項(xiàng)和為Sn,則$\frac{{S}_{2016}}{2016}$1009.

分析 由a1=1,an+1+(-1)nan=2n,可得:a2n+1+a2n=4n,a2n-a2n-1=4n-2.于是a2n+1+a2n-1=2,a2n+2+a2n=8n+2.利用“分組求和”即可得出.

解答 解:∵a1=1,an+1+(-1)nan=2n,
∴a2-a1=2,可得a2=3.
a2n+1+a2n=4n,a2n-a2n-1=4n-2.
∴a2n+1+a2n-1=2,a2n+2+a2n=8n+2.
∴S2016=(a1+a3)+(a5+a7)+…+(a2013+a2015)+(a2+a4)+…+(a2014+a2016
=1008+(8×1+2)+(8×3+2)+…+(8×1007+2)
=1008+8×$\frac{504×(1+1007)}{2}$+2×504
=1008×2018,
∴$\frac{{S}_{2016}}{2016}$=$\frac{1008×2018}{2016}$=1009.
故答案為:1009.

點(diǎn)評(píng) 本題考查了分類討論方法、分組求和、等差數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,令${a_n}=\frac{x_n}{n^2}$,則a1+a2+…+a2015的值為$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,等高的正三棱錐P-ABC與圓錐SO的底面都在平面M上,且圓O過(guò)點(diǎn)A,又圓O的直徑AD⊥BC,垂足為E,設(shè)圓錐SO的底面半徑為1,圓錐體積為$\frac{{\sqrt{3}}}{3}π$.
(1)求圓錐的側(cè)面積;
(2)求異面直線AB與SD所成角的大;
(3)若平行于平面M的一個(gè)平面N截得三棱錐與圓錐的截面面積之比為$\frac{{\sqrt{3}}}{π}$,求三棱錐的側(cè)棱PA與底面ABC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在三棱錐P-ABC中,平面PAC⊥平面ABC,PA⊥PC,AC⊥BC,D為AB的中點(diǎn),M為PD的中點(diǎn),N在棱BC上.
(Ⅰ)當(dāng)N為BC的中點(diǎn)時(shí),證明:DN∥平面PAC;
(Ⅱ)求證:PA⊥平面PBC;
(Ⅲ)是否存在點(diǎn)N使得MN∥平面PAC?若存在,求出$\frac{CN}{CB}$的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知非零數(shù)列{an}滿足:a1=$\frac{1}{2}$,a2=$\frac{1}{4}$,${a}_{n}^{2}$=an-1an+1(n≥2,n∈N*).設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,其中b1=1,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若對(duì)任意的n∈N+.使得不等式:$\frac{_{1}+1}{{a}_{1}}$+$\frac{_{2}+1}{{a}_{2}}$+…+$\frac{_{n}+1}{{a}_{n}}$≥$\frac{m}{{a}_{n}}$恒成立,求實(shí)教m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若兩函數(shù)y=x+a與y=$\sqrt{1-2{x}^{2}}$的圖象有兩個(gè)交點(diǎn)A、B、O是坐標(biāo)原點(diǎn),當(dāng)△OAB是直角三角形時(shí),則滿足條件的所有實(shí)數(shù)a的值的乘積為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.tan70°cos10°+$\sqrt{3}$sin10°tan70°-2sin50°=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足acosB+bcosA=2ccosC,則角C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,四棱錐P-ABCD中,ABCD是正方形,側(cè)棱PA⊥底面ABCD,PA=AB,M、N分別是PC、PD的中點(diǎn),則異面直線BM與CN所成的角大小為( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.arccos$\frac{\sqrt{2}}{3}$D.π-arccos$\frac{\sqrt{2}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案