A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | arccos$\frac{\sqrt{2}}{3}$ | D. | π-arccos$\frac{\sqrt{2}}{3}$ |
分析 以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線BM與CN所成的角的大。
解答 解:∵四棱錐P-ABCD中,ABCD是正方形,側(cè)棱PA⊥底面ABCD,
∴以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
設(shè)PA=AB=2,則B(2,0,0),P(0,0,2),C(2,2,0),
M(1,1,1),D(0,2,0),N(0,1,1),
$\overrightarrow{BM}$=(-1,1,1),$\overrightarrow{CN}$=(-2,-1,1),
設(shè)異面直線BM與CN所成的角為θ,
則cosθ=$\frac{|\overrightarrow{BM}•\overrightarrow{CN}|}{|\overrightarrow{BN}|•|\overrightarrow{CN}|}$=$\frac{2}{\sqrt{3}×\sqrt{6}}$=$\frac{\sqrt{2}}{3}$,
∴θ=arccos$\frac{\sqrt{2}}{3}$.
∴異面直線BM與CN所成的角的大小為arccos$\frac{\sqrt{2}}{3}$.
故選:C.
點(diǎn)評(píng) 本題考查異面直線所成角的大小的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | [1,+∞) | C. | [$\frac{1}{2}$,5) | D. | [$\frac{3}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com