【題目】已知命題:函數(shù)在上單調遞增;命題:函數(shù)在上單調遞減.
(Ⅰ)若是真命題,求實數(shù)的取值范圍;
(Ⅱ)若或為真命題,且為假命題,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】羅馬數(shù)字是歐洲在阿拉伯數(shù)字傳入之前使用的一種數(shù)碼,它的產生標志著一種古代文明的進步.羅馬數(shù)字的表示法如下:
數(shù)字 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
形式 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ⅶ | Ⅷ | Ⅸ |
其中“Ⅰ”需要1根火柴,“Ⅴ”與“X”需要2根火柴,若為0,則用空位表示. (如123表示為,405表示為)如果把6根火柴以適當?shù)姆绞饺糠湃胂旅娴谋砀裰,那么可以表示的不同的三位?shù)的個數(shù)為( )
A.87B.95C.100D.103
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是拋物線的焦點,若點在拋物線上,且
求拋物線的方程;
動直線與拋物線相交于兩點,問:在軸上是否存在定點其中,使得向量與向量共線其中為坐標原點?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線的極坐標方程為.現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標系方程和直線的普通方程;
(2)點在曲線上,且到直線的距離為,求符合條件的點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點在點上方,直角頂點的坐標為.
(1)求邊上的高線所在直線的方程;
(2)求等腰直角三角形的外接圓的標準方程;
(3)分別求兩直角邊,所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某住宅小區(qū)為了使居民有一個優(yōu)雅、舒適的生活環(huán)境,計劃建一個八邊形的休閑小區(qū),其主體造型的平面圖是由兩個相同的矩形ABCD和矩形EFGH構成的面積是200 m2的十字形區(qū)域,現(xiàn)計劃在正方形MNPQ上建一花壇,造價為4 200元/m2,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210元/m2,再在四個空角上鋪草坪,造價為80元/m2.
(1)設總造價為S元,AD的邊長為x m,試建立S關于x的函數(shù)解析式;
(2)計劃至少要投多少萬元才能建造這個休閑小區(qū)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的左右焦點分別為,,實軸長為6,漸近線方程為,動點在雙曲線左支上,點為圓上一點,則的最小值為
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com