【題目】已知命題:函數(shù)上單調(diào)遞增;命題:函數(shù)上單調(diào)遞減.

(Ⅰ)若是真命題,求實(shí)數(shù)的取值范圍;

(Ⅱ)若為真命題,為假命題,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)根據(jù)題意轉(zhuǎn)化為上恒成立,由二次函數(shù)的圖像與性質(zhì)即可求解.

(Ⅱ)根據(jù)復(fù)合命題的真假性可得一真一假,當(dāng)真且假時(shí),則,當(dāng)假且真時(shí),則,解不等式組即可求解.

(Ⅰ)當(dāng)命題為真命題時(shí),

函數(shù)上單調(diào)遞減,

所以上恒成立.

所以上單調(diào)遞減,故

解得,

所以是真命題,實(shí)數(shù)的取值范圍為.

(Ⅱ)命題為真命題時(shí),函數(shù)上單調(diào)遞增,∴.

因?yàn)?/span>為真命題,為假命題,所以的真值相反.

(。┊(dāng)真且假時(shí),有,此不等式無解.

(ⅱ)當(dāng)假且真時(shí),有

解得.

綜上可得,實(shí)數(shù)的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】羅馬數(shù)字是歐洲在阿拉伯?dāng)?shù)字傳入之前使用的一種數(shù)碼,它的產(chǎn)生標(biāo)志著一種古代文明的進(jìn)步.羅馬數(shù)字的表示法如下:

數(shù)字

1

2

3

4

5

6

7

8

9

形式

其中需要1根火柴,“X”需要2根火柴,若為0,則用空位表示. (如123表示為,405表示為)如果把6根火柴以適當(dāng)?shù)姆绞饺糠湃胂旅娴谋砀裰,那么可以表示的不同的三位?shù)的個(gè)數(shù)為(

A.87B.95C.100D.103

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是拋物線的焦點(diǎn),若點(diǎn)在拋物線上,且

求拋物線的方程;

動直線與拋物線相交于兩點(diǎn),問:在軸上是否存在定點(diǎn)其中,使得向量與向量共線其中為坐標(biāo)原點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).

1)求曲線的直角坐標(biāo)系方程和直線的普通方程;

2)點(diǎn)在曲線上,且到直線的距離為,求符合條件的點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點(diǎn)在點(diǎn)上方,直角頂點(diǎn)的坐標(biāo)為

(1)求邊上的高線所在直線的方程;

(2)求等腰直角三角形的外接圓的標(biāo)準(zhǔn)方程;

(3)分別求兩直角邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知相交于點(diǎn),線段是圓的一條動弦,且,則的最小值是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調(diào)性;

(Ⅱ)若,記函數(shù)是函數(shù)的兩個(gè)極值點(diǎn),且的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某住宅小區(qū)為了使居民有一個(gè)優(yōu)雅、舒適的生活環(huán)境,計(jì)劃建一個(gè)八邊形的休閑小區(qū),其主體造型的平面圖是由兩個(gè)相同的矩形ABCD和矩形EFGH構(gòu)成的面積是200 m2的十字形區(qū)域,現(xiàn)計(jì)劃在正方形MNPQ上建一花壇,造價(jià)為4 200元/m2,在四個(gè)相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價(jià)為210元/m2,再在四個(gè)空角上鋪草坪,造價(jià)為80元/m2.

(1)設(shè)總造價(jià)為S元,AD的邊長為x m,試建立S關(guān)于x的函數(shù)解析式;

(2)計(jì)劃至少要投多少萬元才能建造這個(gè)休閑小區(qū)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左右焦點(diǎn)分別為,實(shí)軸長為6,漸近線方程為,動點(diǎn)在雙曲線左支上點(diǎn)為圓上一點(diǎn),的最小值為

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

同步練習(xí)冊答案