【題目】已知命題:函數(shù)上單調遞增;命題:函數(shù)上單調遞減.

(Ⅰ)若是真命題,求實數(shù)的取值范圍;

(Ⅱ)若為真命題,為假命題,求實數(shù)的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)根據(jù)題意轉化為上恒成立,由二次函數(shù)的圖像與性質即可求解.

(Ⅱ)根據(jù)復合命題的真假性可得一真一假,當真且假時,則,當假且真時,則,解不等式組即可求解.

(Ⅰ)當命題為真命題時,

函數(shù)上單調遞減,

所以上恒成立.

所以上單調遞減,故,

解得,

所以是真命題,實數(shù)的取值范圍為.

(Ⅱ)命題為真命題時,函數(shù)上單調遞增,∴.

因為為真命題,為假命題,所以的真值相反.

(。┊真且假時,有,此不等式無解.

(ⅱ)當假且真時,有

解得.

綜上可得,實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】羅馬數(shù)字是歐洲在阿拉伯數(shù)字傳入之前使用的一種數(shù)碼,它的產生標志著一種古代文明的進步.羅馬數(shù)字的表示法如下:

數(shù)字

1

2

3

4

5

6

7

8

9

形式

其中需要1根火柴,“X”需要2根火柴,若為0,則用空位表示. (如123表示為,405表示為)如果把6根火柴以適當?shù)姆绞饺糠湃胂旅娴谋砀裰,那么可以表示的不同的三位?shù)的個數(shù)為(

A.87B.95C.100D.103

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是拋物線的焦點,若點在拋物線上,且

求拋物線的方程;

動直線與拋物線相交于兩點,問:在軸上是否存在定點其中,使得向量與向量共線其中為坐標原點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,曲線的極坐標方程為.現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)).

1)求曲線的直角坐標系方程和直線的普通方程;

2)點在曲線上,且到直線的距離為,求符合條件的點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點在點上方,直角頂點的坐標為

(1)求邊上的高線所在直線的方程;

(2)求等腰直角三角形的外接圓的標準方程;

(3)分別求兩直角邊,所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知相交于點,線段是圓的一條動弦,且,則的最小值是___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調性;

(Ⅱ)若,記函數(shù)是函數(shù)的兩個極值點,且的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某住宅小區(qū)為了使居民有一個優(yōu)雅、舒適的生活環(huán)境,計劃建一個八邊形的休閑小區(qū),其主體造型的平面圖是由兩個相同的矩形ABCD和矩形EFGH構成的面積是200 m2的十字形區(qū)域,現(xiàn)計劃在正方形MNPQ上建一花壇,造價為4 200元/m2,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210元/m2,再在四個空角上鋪草坪,造價為80元/m2.

(1)設總造價為S元,AD的邊長為x m,試建立S關于x的函數(shù)解析式;

(2)計劃至少要投多少萬元才能建造這個休閑小區(qū)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的左右焦點分別為,,實軸長為6,漸近線方程為,動點在雙曲線左支上為圓上一點,的最小值為

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

同步練習冊答案