已知A(2,-4),B(0,6),C(-8,10),則
AB
+2
BC
為( 。
A、(18,18)
B、(-18,18)
C、(18,-18)
D、(-18,-18)
考點(diǎn):平面向量的坐標(biāo)運(yùn)算
專題:平面向量及應(yīng)用
分析:直接利用向量的坐標(biāo)運(yùn)算求解即可.
解答: 解:A(2,-4),B(0,6),C(-8,10),
AB
=(-2,10),
BC
=(-8,4)
AB
+2
BC
=(-2,10)+2(-8,4)=(-18,18).
故選:B.
點(diǎn)評(píng):本題考查向量的坐標(biāo)運(yùn)算,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn=4-an-
1
2n-2
,求an與Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=sin(-
3x
2
+
π
4
)+1的單調(diào)遞增區(qū)間,對(duì)稱軸,對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=
a+4i
1+i
(a∈R),則在復(fù)平面內(nèi),“a<4”是“z對(duì)應(yīng)點(diǎn)在第一象限”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)0≤α≤π,若函數(shù)f(x)=
8x2-8xsinα+cos2α
的定義域?yàn)镽,則α的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明不等式:(a-c)2+4(a-b)(c-b)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A、B、C、D均在球O上,AB=BC=
3
,AC=3,若三棱錐D-ABC體積的最大值為
3
3
4
,則球O的表面積為(  )
A、36π
B、16π
C、12π
D、
16
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BCD中,AB⊥平面BCD,BC⊥CD,∠CBD=60°,BC=2.
(Ⅰ)求證:平面ABC⊥平面ACD;
(Ⅱ)若E是BD的中點(diǎn),F(xiàn)為線段AC上的動(dòng)點(diǎn),EF與平面ABC所成的角記為θ,當(dāng)tanθ的最大值為
15
2
,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-(a+1)x+
1
2
x
2(a≥0),若直線l與曲線y=f(x)相切,切點(diǎn)是P(2,0),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案