13.已知數(shù)列{an}的各項(xiàng)均為正數(shù),觀察程序框圖,若k=5,k=10時(shí),分別有S=$\frac{5}{11}$和S=$\frac{10}{21}$
(1)試求數(shù)列{an}的通項(xiàng);
(2)令bn=2an,求b1+b2+…+b2015的值.

分析 (1)由框圖可知S=$\frac{1}{{a}_{1}{a}_{2}}+\frac{1}{{a}_{2}{a}_{3}}+…+\frac{1}{{a}_{k}{a}_{k+1}}$,$\frac{1}{{a}_{k}{a}_{k+1}}$=$\frac{1}qnmegl5$($\frac{1}{{a}_{k}}+\frac{1}{{a}_{k+1}}$),從而S=$\frac{1}omk5s55$($\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{k+1}}$),由此能求出數(shù)列{an}的通項(xiàng).
(2)由$_{n}={2}^{{a}_{n}}={2}^{2n-1}$,能求出b1+b2+…+b2015的值.

解答 解:(1)由框圖可知:
S=$\frac{1}{{a}_{1}{a}_{2}}+\frac{1}{{a}_{2}{a}_{3}}+…+\frac{1}{{a}_{k}{a}_{k+1}}$,
∵{an}是等差數(shù)列,設(shè)公差為d,
∴$\frac{1}{{a}_{k}{a}_{k+1}}$=$\frac{1}da24r4s$($\frac{1}{{a}_{k}}+\frac{1}{{a}_{k+1}}$),
∴$S=\frac{1}o5b3cmh(\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}+\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}}+…+\frac{1}{{a}_{k}}-\frac{1}{{a}_{k+1}})$=$\frac{1}cu1s3ae$($\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{k+1}}$),
由題意可知,k=5時(shí),S=$\frac{5}{11}$,k=10時(shí),$S=\frac{10}{21}$,
∴$\left\{\begin{array}{l}{\frac{1}i7okfxt(\frac{1}{{a}_{1}}-\frac{1}{{a}_{6}})=\frac{5}{11}}\\{\frac{1}dl5zh08(\frac{1}{{a}_{1}}-\frac{1}{{a}_{11}})=\frac{10}{21}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$,或$\left\{\begin{array}{l}{{a}_{1}=-1}\\{d=-2}\end{array}\right.$(舍),
∴an=a1+(n-1)d=2n-1.
(2)由(1)得:$_{n}={2}^{{a}_{n}}={2}^{2n-1}$,
∴b1+b2+…+b2015
=2+23+…+22n-1
=$\frac{2(1-{4}^{n})}{1-4}$
=$\frac{2}{3}$(4n-1).

點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意程序框圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合U={x|-3≤x<2},M={x|-1<x<1},∁UN={x|0<x<2},那么集合M∪N={x|-3≤x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等比數(shù)列{an}中,a4=2,a5=5,則lga1+lga2+…+lga8等于(  )
A.6B.4C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.橢圓$\frac{x^2}{9}$+$\frac{y^2}{m}$=1的焦距為4,則n=( 。
A.5B.3或5C.13D.5或13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實(shí)數(shù)x,y滿足方程(x-2)2+y2=3,則$\frac{y}{x}$的最小值-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{x}{ax+b}$(a,b是常數(shù)且a≠0),滿足f(1)=$\frac{1}{2}$,且方程f(x)=x有唯一實(shí)數(shù)解,求函數(shù)f(x)的解析式和f[f(-3)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)全集U={1,2,3,4,5,6,7},A={3,5},B={4,6,7},則(∁UA)∩(∁UB)=( 。
A.{1,2,3}B.{1,2}C.{1,3}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知:正數(shù)a,b,x,y滿足a+b=10,$\frac{a}{x}$+$\frac{y}$=1,且x+y的最小值為18,求a,b的值.
(2)若不等式x+2$\sqrt{2xy}$≤a(x+y)對一切正數(shù)x、y恒成立,求正數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,體積為$\frac{9}{4}$,底面的邊長都為$\sqrt{3}$,若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊答案