14.設(shè)Sn為等差數(shù)列{an}(n∈N*)的前n項(xiàng)和,且a1=1,S3=6.
(1)求公差d的值;
(2)Sn<3an,求所有滿足條件的n的值.

分析 (1)由a1=1,S3=6.可得3×1+$\frac{3×2}{2}$d=6,解得d.
(2)由Sn<3an,可得n+$\frac{n(n-1)}{2}$<3(1+n-1),解出即可得出.

解答 解:(1)∵a1=1,S3=6.∴3×1+$\frac{3×2}{2}$d=6,解得d=1.
(2)∵Sn<3an,∴n+$\frac{n(n-1)}{2}$<3(1+n-1),解得0<n<5,
∴n=1,2,3,4.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.為了得到y(tǒng)=cos(${\frac{π}{6}$-$\frac{x}{2}}$)的圖象,只需將y=sin$\frac{x}{2}$的圖象向左平移φ(φ>0)個(gè)單位,則φ的最小值為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≤2}\\ \begin{array}{l}kx-y≥-2\\ y≥0\end{array}\end{array}}\right.$,若目標(biāo)函數(shù)z=y-x的最小值為$-\frac{1}{2}$,則k的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(cos$\frac{π}{6}$,sin$\frac{π}{6}$),$\overrightarrow$=(cos$\frac{5π}{6}$,sin$\frac{5π}{6}$),則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.1B.$\frac{\sqrt{6}}{2}$C.$\sqrt{3}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知tanα=2,cosβ=-$\frac{7\sqrt{2}}{10}$,且a,β∈(0,π).
(1)求cos2α的值;
(2)求2α-β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}為等差數(shù)列,a1=1,公差d≠0,a1、a2、a5成等比數(shù)列,則a2015的值為( 。
A.4029B.4031C.4033D.4035

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)A是由x軸、直線x=a(0<a≤1)和曲線y=x2圍成的曲邊三角形區(qū)域,集合Ω={(x,y)|0≤x≤1,0≤y≤1},若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,點(diǎn)P落在區(qū)域A內(nèi)的概率為$\frac{1}{192}$,則實(shí)數(shù)a的值是( 。
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求證:8cos4θ=cos4θ+4cos2θ+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.復(fù)數(shù)($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2012的共軛復(fù)數(shù)是-$\frac{1}{2}-\frac{\sqrt{3}}{2}i$.

查看答案和解析>>

同步練習(xí)冊(cè)答案