分析 作出不等式組對應的平面區(qū)域,根據(jù)目標是的最小值建立不等式關系進行求解即可.
解答 解:由z=y-x得y=x+z,
若z=y-x的最小值為$-\frac{1}{2}$,即y-x=$-\frac{1}{2}$,
即y=x$-\frac{1}{2}$,
先作出不等式組$\left\{\begin{array}{l}{x+y≤2}\\{y≥0}\end{array}\right.$的區(qū)域,
然后作出直線y=x$-\frac{1}{2}$,
由$\left\{\begin{array}{l}{y=x-\frac{1}{2}}\\{y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=0}\end{array}\right.$,即A($\frac{1}{2}$,0),
此時A也在直線kx-y=-2上,
則$\frac{1}{2}$k-0=-2,即k=-4,
故答案為:-4
點評 本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃問題中的基本方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ,3,6 | B. | 6,3 | C. | 9,6 | D. | 9,12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈D,f(-x)+f(x)=0 | B. | ?x0∈D,f(-x0)+f(x0)=0 | ||
C. | ?x0∈D,[f(-x0)]2-[f(x0)]2≠0 | D. | ?x∈D,[f(-x)]2-[f(x)]2=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com