A. | 曲線y=g(x)的一個對稱中心為點(-$\frac{π}{12}$,0) | |
B. | 曲線y=g(x)的一個對稱軸為直線x=$\frac{kπ}{4}$+$\frac{π}{16}$(k∈Z) | |
C. | 函數(shù)y=g(x)在區(qū)間[$\frac{2π}{3}$,$\frac{3π}{4}$]內(nèi)單調(diào)遞減 | |
D. | 函數(shù)y=g(x)在區(qū)間[$\frac{2π}{3}$,$\frac{3π}{4}$]內(nèi)不單調(diào) |
分析 利用兩角和的正弦化積,由函數(shù)的對稱中心的縱坐標(biāo)為-1判斷A錯誤;求出函數(shù)的對稱軸方程說明B錯誤;由x∈[$\frac{2π}{3}$,$\frac{3π}{4}$],求得相位的范圍,結(jié)合正弦函數(shù)的單調(diào)性說明C正確,D錯誤.
解答 解:g(x)=sin4x+$\sqrt{3}$cos4x-1=$2sin(4x+\frac{π}{3})-1$,
其對稱中心的縱坐標(biāo)為-1,故A錯誤;
由$4x+\frac{π}{3}=\frac{π}{2}+kπ$,得$x=\frac{π}{24}+\frac{kπ}{4},k∈Z$,故B錯誤;
當(dāng)$\frac{2π}{3}≤x≤\frac{3π}{4}$時,有$\frac{8π}{3}≤4x≤3π$,則$3π≤4x+\frac{π}{3}≤\frac{10π}{3}$,函數(shù)y=g(x)在區(qū)間[$\frac{2π}{3}$,$\frac{3π}{4}$]內(nèi)單調(diào)遞減,故C正確,D不正確.
故選:C.
點評 本題考查三角函數(shù)中的恒等變換應(yīng)用,考查了y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com