分析 (1)由AA1⊥平面ABC可得AA1⊥CD,由等腰三角形ABC可得AB⊥CD,故CD⊥平面A1ABB1;
(2)連結(jié)AC1,BC1,設(shè)BC1∩B1C=E,則由中位線定理得出DE∥AC1,故而AC1∥平面CDB1;
(3)可證明DE的平行線AC1⊥平面A1BC,得到DE⊥平面平面A1BC,從而得出平面A1BC⊥平面CDB1.
解答 證明:(1)∵AC=BC,D是AB的中點(diǎn),
∴CD⊥AB,
∵AA1⊥平面ABC,CD?平面ABC,
∴AA1⊥CD,
又AA1?平面平面A1ABB1,AB?平面A1ABB1,AA1∩AB=A,
∴CD⊥平面A1ABB1.
(2)連結(jié)AC1,BC1,設(shè)BC1∩B1C=E,
∵四邊形BB1C1C是平行四邊形,
∴E是BC1的中點(diǎn),又D是AB的中點(diǎn),
∴DE∥AC1,∵DE?平面B1DC,AC1?平面B1DC,
∴AC1∥平面CDB1.
(3)∵AA1⊥平面ABC,BC?平面ABC,
∴AA1⊥BC,又AC⊥BC,AC?平面AA1C1C,AA1?平面AA1C1C,AA1∩AC=A,
∴BC⊥平面AA1C1C,∵AC1?平面AA1C1C,
∴BC⊥AC1,
∵AA1C1C是矩形,∴AC1⊥A1C,
又A1C?平面A1BC,BC?平面A1BC,A1C∩BC=C,
∴AC1⊥平面A1BC,又AC1∥DE,
∴DE⊥平面A1BC,∵DE?平面B1DC,
∴平面A1BC⊥平面CDB1.
點(diǎn)評(píng) 本題考查了線面平行,線面垂直,面面垂直的判定,構(gòu)造平行線DE是證明本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{30}}{10}$ | B. | 0 | C. | $\frac{\sqrt{15}}{10}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2,+∞) | B. | [0,+∞) | C. | (1,2] | D. | (-∞,0]∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 曲線y=g(x)的一個(gè)對(duì)稱中心為點(diǎn)(-$\frac{π}{12}$,0) | |
B. | 曲線y=g(x)的一個(gè)對(duì)稱軸為直線x=$\frac{kπ}{4}$+$\frac{π}{16}$(k∈Z) | |
C. | 函數(shù)y=g(x)在區(qū)間[$\frac{2π}{3}$,$\frac{3π}{4}$]內(nèi)單調(diào)遞減 | |
D. | 函數(shù)y=g(x)在區(qū)間[$\frac{2π}{3}$,$\frac{3π}{4}$]內(nèi)不單調(diào) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com