【題目】選修4-4:坐標系與參數(shù)方程
以坐標原點為極點,以軸的非負半軸為極軸建立極坐標系,已知曲線的參數(shù)方程為(為參數(shù),),直線的參數(shù)方程為(為參數(shù)).
(1)點在曲線上,且曲線在點處的切線與直線垂直,求點的極坐標;
(2)設直線與曲線有兩個不同的交點,求直線的斜率的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程.
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標系原點為極點,軸正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)若直線的極坐標方程為,求直線被曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),( )
(1)若,求曲線在處的切線方程.
(2)對任意,總存在,使得(其中為的導數(shù))成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠于2016年下半年對生產(chǎn)工藝進行了改造(每半年為一個生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示(如圖).已知每個生產(chǎn)周期內(nèi)與其中位數(shù)誤差在±5范圍內(nèi)(含±5)的產(chǎn)品為優(yōu)質(zhì)品,與中位數(shù)誤差在±15范圍內(nèi)(含±15)的產(chǎn)品為合格品(不包括優(yōu)質(zhì)品),與中位數(shù)誤差超過±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質(zhì)品可獲利潤20元,生產(chǎn)一件合格品可獲利潤10元,生產(chǎn)一件次品要虧損10元
(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤為10的概率;
(Ⅱ)是否有95%的把握認為“優(yōu)質(zhì)品與生產(chǎn)工藝改造有關”.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2=.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分數(shù)在以上(含)的同學獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).
(1)填寫下面的列聯(lián)表,能否有超過的把握認為“獲獎與學生的文理科有關”?
(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學生中,任意抽取名學生,記“獲獎”學生人數(shù)為,求的分布列及數(shù)學期望.
文科生 | 理科生 | 合計 | |
獲獎 | |||
不獲獎 | |||
合計 |
附表及公式:
,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,離心率,點在橢圓上.
(1)求橢圓的方程;
(2)設過點且不與坐標軸垂直的直線交橢圓于、兩點,線段的垂直平分線與軸交于點,求點的橫坐標的取值范圍;
(3)在第(2)問的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長方形ABCD中,AB=1,AD=。現(xiàn)將長方形沿對角線BD折起,使AC=a,得到一個四面體ABCD,如圖所示.
(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應的a值;若不垂直,請說明理由.
(2)當四面體ABCD的體積最大時,求二面角ACDB的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com