3.圓$ρ=\sqrt{2}(cosθ+sinθ)$的圓心的極坐標是(1,$\frac{π}{4}$);半徑是1.

分析 把方程兩邊同時乘以ρ,轉(zhuǎn)化為直角坐標方程,求出圓心的直角坐標和半徑,再結(jié)合$ρ=\sqrt{{x}^{2}+{y}^{2}}$,x=ρcosθ求圓心的極坐標.

解答 解:由$ρ=\sqrt{2}(cosθ+sinθ)$,得
${ρ}^{2}=\sqrt{2}ρcosθ+\sqrt{2}ρsinθ$,
∴${x}^{2}+{y}^{2}-\sqrt{2}x-\sqrt{2}y=0$,即$(x-\frac{\sqrt{2}}{2})^{2}+(y-\frac{\sqrt{2}}{2})^{2}=1$.
則圓心的直角坐標為($\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$),半徑為1.
則$ρ=\sqrt{(\frac{\sqrt{2}}{2})^{2}+(\frac{\sqrt{2}}{2})^{2}}=1$,cosθ=$\frac{\sqrt{2}}{2}$,
∵($\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$)在第一象限,∴θ=$\frac{π}{4}$.
∴圓心的極坐標是(1,$\frac{π}{4}$).
故答案為:$(1,\frac{π}{4})$;1.

點評 本題考查簡單曲線的極坐標方程,注意極坐標方程與普通方程的互化公式的運用,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.給出以下結(jié)論:
(1)直線a∥平面α,直線b?α,則a∥b.
(2)若a?α,b?α,則a、b無公點.       
(3)若a?α,則a∥α或a與α相交 
(4)若a∩α=A,則a?α.
正確的個數(shù)為( 。
A.1個B.4個C.3個D.2個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知ω>0,函數(shù)f(x)=sinωx在區(qū)間$[{-\frac{π}{4},\frac{π}{4}}]$上恰有9個零點,則ω的取值范圍是( 。
A.16≤ω<20B.16≤ω≤20C.16≤ω<18D.16≤ω≤18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若sin(θ+$\frac{π}{3}$)=$\frac{5}{13}$,θ∈($\frac{π}{6}$,$\frac{2π}{3}$),則cosθ的值為$\frac{5\sqrt{3}-12}{26}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知梯形ABCD中,AB⊥AD,$\overrightarrow{AB}=3\overrightarrow{DC},cos∠DAC=\frac{{\sqrt{3}}}{2},\overrightarrow{BE}=m\overrightarrow{BC}$(0<m<1),若|$\overrightarrow{AE}$|2=$|{\overrightarrow{AC}}||{\overrightarrow{AB}}$|,則$\frac{CE}{CB}$=( 。
A.$\frac{1+\sqrt{15}}{7}$B.$\frac{1}{7}$C.$\frac{2}{3}$D.$\frac{2+\sqrt{15}}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知數(shù)列{an}的前n項和Sn=n2+2n-1(n∈N*),則a1=2;數(shù)列{an}的通項公式為an=$\left\{\begin{array}{l}{2,n'=1}\\{2n+1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.△ABC中,a,b,c分別為角A,B,C的對邊,a=$\sqrt{3}$,b=$\sqrt{2}$,B=45°,則角C的大小為( 。
A.15°B.75°C.15°或75°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在復平面內(nèi),復數(shù)$\frac{2}{1+i}$(i為虛數(shù)單位)對應的點與原點的距離是( 。
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知△ABC中,頂點A(7,-3),AC邊上的高BH所在直線方程為x-2y-5=0,AB邊上的中線CM所在的直線方程為6x-y-21=0.
(Ⅰ)求直線AC和直線BC的方程;
(Ⅱ)若點P滿足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|=|$\overrightarrow{PC}$|,求$\overrightarrow{AP}$•$\overrightarrow{BC}$的值.

查看答案和解析>>

同步練習冊答案