2.雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=-1$的漸近線為(  )
A.$y=±\frac{3}{2}x$B.$y=±\frac{2}{3}x$C.$y=±\frac{{\sqrt{13}}}{3}x$D.$y=±\frac{{\sqrt{13}}}{2}x$

分析 由雙曲線的方程和漸近線方程的關(guān)系,可將雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=-1$中的“-1”換為“0”,化簡整理,即可得到所求方程.

解答 解:由雙曲線的方程和漸近線方程的關(guān)系,
可將雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=-1$中的“-1”換為“0”,
可得$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=0,
即為y=±$\frac{2}{3}$x.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的漸近線方程的求法,注意運(yùn)用雙曲線方程和漸近線方程的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在單位正方形ABCD中,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{c}$,則|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{2}$,|$\overrightarrow{a}+\overrightarrow+\overrightarrow{c}$|=2$\sqrt{2}$,|$\overrightarrow{a}+\overrightarrow{c}-\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=e${\;}^{cos{x}^{2}}$,求dy.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若A,B是雙曲線x2-$\frac{{y}^{2}}{3}$=1上兩個(gè)動(dòng)點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則△AOB面積的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為30°的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線離心率的取值范圍是( 。
A.($\frac{1}{2}$,$\frac{2\sqrt{3}}{3}$)B.[$\frac{1}{2}$,$\frac{2\sqrt{3}}{3}$]C.($\frac{\sqrt{3}}{3}$,+∞)D.[$\frac{2\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義在R上的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù)
(Ⅰ)求a,b的值;
(Ⅱ)若對(duì)任意的t∈[-1,2],不等式f(2t2+1)<f(kt)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知拋物線y2=2px的焦點(diǎn)是雙曲線$\frac{x^2}{8}-\frac{y^2}{p}$=1的一個(gè)焦點(diǎn),則雙曲線的漸近線方程為y=±x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若雙曲線$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1的一個(gè)焦點(diǎn)在拋物線y2=2px的準(zhǔn)線上,則該雙曲線的離心率為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{3}{2}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知矩陣A=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$,求矩陣A的特征值和特征向量.

查看答案和解析>>

同步練習(xí)冊答案