14.設(shè)函數(shù)f(x)=(x3-1)2+1,下列結(jié)論中正確的是(  )
A.x=1是函數(shù)f(x)的極小值點(diǎn),x=0是函數(shù)f(x)的極大值點(diǎn)
B.x=1及x=0均是函數(shù)f(x)的極大值點(diǎn)
C.x=1是函數(shù)f(x)的極大值點(diǎn),x=0是函數(shù)f(x)的極小值點(diǎn)
D.x=1是函數(shù)f(x)的極小值點(diǎn),函數(shù)f(x)無(wú)極大值點(diǎn)

分析 先對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),令f'(x)=0,找到有可能的極值點(diǎn),然后根據(jù)導(dǎo)數(shù)的正負(fù)判斷原函數(shù)的單調(diào)性進(jìn)而確定函數(shù)f(x)的極值.

解答 解:∵f(x)=x6-2x3+2,∴f'(x)=6x5-6x2=6x2(x3-1)
令f'(x)=0,x=0或x=1
∵當(dāng)x>1時(shí),f'(x)>0,所以函數(shù)f(x)單調(diào)遞增,
當(dāng)x<1時(shí),f'(x)<0,所以函數(shù)f(x)單調(diào)遞減,
∴函數(shù)f(x)在x=1時(shí)取到極小值,無(wú)極大值.
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)的極值與其導(dǎo)函數(shù)關(guān)系,即函數(shù)取到極值時(shí)導(dǎo)函數(shù)一定等于0,但導(dǎo)函數(shù)等于0時(shí)還要判斷原函數(shù)的單調(diào)性才能確定原函數(shù)的極值點(diǎn),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.一個(gè)幾何體的三視圖如圖,每個(gè)小格表示一個(gè)單位,則該幾何體的側(cè)面積為( 。
A.2$\sqrt{5}$πB.C.2π+2$\sqrt{5}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某中學(xué)對(duì)男女學(xué)生是否喜愛(ài)古典音樂(lè)進(jìn)行了一個(gè)調(diào)查,調(diào)查者對(duì)學(xué)校高三年級(jí)隨機(jī)抽取了100名學(xué)生,調(diào)查結(jié)果如表:
喜愛(ài)不喜愛(ài)總計(jì)
男學(xué)生6080
女學(xué)生
總計(jì)7030
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂(lè)的程度有差異”;
(2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取5名學(xué)生,再?gòu)倪@5名學(xué)生中隨機(jī)抽取2名學(xué)生去某古典音樂(lè)會(huì)的現(xiàn)場(chǎng)觀看演出,求正好有1名男生被抽中的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.x>0時(shí),函數(shù)y=x+$\frac{1}{x}$-1的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.?dāng)?shù)列{an}是等差數(shù)列,a1=1,an=-512,Sn=-1022,求公差d及n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在某次聯(lián)考測(cè)試中,學(xué)生數(shù)學(xué)成績(jī)X~N(100,σ2)(σ>0),若P(80<X<120)=0.8,則P(0<X<80)等于( 。
A.0.05B.0.1C.0.15D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-k}\\{y=3-2k}{\;}\end{array}\right.$(k為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,建立極坐標(biāo)系.圓C的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A,B,若點(diǎn)M的坐標(biāo)為(2,3).求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.根據(jù)如圖所示的程序語(yǔ)句,若輸入的x值為3,則輸出的y值為( 。
A.2B.3C.6D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合P={0,1,2},Q={y|y=3x},則P∩Q的子集的個(gè)數(shù)是( 。
A.1B.2C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案