4.已知集合P={0,1,2},Q={y|y=3x},則P∩Q的子集的個(gè)數(shù)是( 。
A.1B.2C.4D.8

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)解關(guān)于Q的不等式,求出集合的交集即可.

解答 解:∵P={0,1,2},Q={y|y=3x}={y|y>0},
∴P∩Q={1,2},
∴P∩Q的子集的個(gè)數(shù)是22=4,
故選:C.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的性質(zhì),考查集合的運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)函數(shù)f(x)=(x3-1)2+1,下列結(jié)論中正確的是( 。
A.x=1是函數(shù)f(x)的極小值點(diǎn),x=0是函數(shù)f(x)的極大值點(diǎn)
B.x=1及x=0均是函數(shù)f(x)的極大值點(diǎn)
C.x=1是函數(shù)f(x)的極大值點(diǎn),x=0是函數(shù)f(x)的極小值點(diǎn)
D.x=1是函數(shù)f(x)的極小值點(diǎn),函數(shù)f(x)無(wú)極大值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.i是虛數(shù)單位,若$\frac{2+i}{1+i}$=a+bi(a,b∈R),則log2(a-b)的值是( 。
A.-1B.1C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=alnx+$\frac{1}{2}$bx2+x,(a,b∈R)
(Ⅰ)若函數(shù)f(x)在x1=1,x2=2處取得極值,求a,b的值,并求出極值
(Ⅱ)若函數(shù)f(x)在(1,f(1))處的切線的斜率為1,存在x∈[1,e],使得f(x)-x≤(a+2)(-$\frac{1}{2}$x2+x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{{1-\frac{1}{2}i}}{{1+\frac{1}{2}i}}$在復(fù)平面所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=6,S4=12,定義$\underset{\stackrel{n}{π}}{k=1}$a2k-1=a1+a3+…+a2n-1為數(shù)列{an}的前n項(xiàng)奇數(shù)項(xiàng)之和,則$\underset{\stackrel{n}{π}}{k=1}$a2k-1=( 。
A.2n2-6n+4B.n2-3n+2C.2n2-2nD.n2-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合M={x|x2≤1,x∈Z},N={a,a2},則使M∪N=M成立的a的值是(  )
A.1B.0C.-1D.1或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的兩條漸近線與圓:(x-3)2+y2=1都相切,則雙曲線C的離心率是$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知cos($\frac{π}{2}$+α)=$\frac{3}{5}$,則sin(π-α)=-$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案