3.若兩平行直線2x+y-4=0與y=-2x-m-2間的距離不大于$\sqrt{5}$,則m的取值范圍是(  )
A.[-11,-1]B.[-11,0]C.[-11,-6]∪(-6,-1]D.[-1,+∞)

分析 直接利用平行線之間的距離列出不等式求解即可.

解答 解:兩平行直線2x+y-4=0與y=-2x-m-2間的距離不大于$\sqrt{5}$,
可得:$\frac{|m+2+4|}{\sqrt{5}}$$≤\sqrt{5}$,解得-11≤x≤-1.
故選:A.

點(diǎn)評(píng) 本題考查平行線之間的距離的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.集合A={x|-2-a<x<a,a>0},命題p:1∈A,命題q:2∈A,若p∨q為真命題,p∧q為假命題,則a的取值范圍是( 。
A.0<a<1或a>2B.0<a<1或α≥2C.1<a≤2D.1≤a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.算式:x2+$\frac{1}{{x}^{2}+2}$的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}滿足:an+1=2an,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)折bn=log2an(neN*),試求數(shù)列($\frac{1}{_{n•_{n+1}}}$)的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.計(jì)算:tan5°tan55°tan65°tan75°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知acosC+$\sqrt{3}$asinC=b+2c
(1)求角A;
(2)若向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$方向上的投影為$\frac{33}{14}$,且sinC=$\frac{3\sqrt{3}}{14}$,求b的值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知直線y=kx(k>0)與圓C:(x-2)2+y2=1相交于A,B兩點(diǎn),若AB=$\frac{2}{5}$$\sqrt{5}$則k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.y=log2(4-x)的定義域?yàn)閧x|x<4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=ax2+bx+c的圖象如下圖所示,判斷a,b,c,a+b+c的符號(hào).

查看答案和解析>>

同步練習(xí)冊(cè)答案