9.函數(shù)f(x)=$\sqrt{{x}^{2}-4x}$,單調(diào)增區(qū)間為[4,+∞).

分析 根據(jù)復合函數(shù)的單調(diào)性之間的關系求函數(shù)的單調(diào)區(qū)間.

解答 解:設t=g(x)=x2-4x,則y=$\sqrt{t}$在定義域上單調(diào)遞增,
由t=g(x)=x2-4x≥0,解得x2-4x≥0,即x≤0或x≥4,
又函數(shù)由t=g(x)=x2-4x的對稱軸為x=2,拋物線開口向上,
∴函數(shù)t=g(x)=x2-4x的單調(diào)增區(qū)間為[4,+∞),單調(diào)減區(qū)間為(-∞,0].
∴函數(shù)f(x)=$\sqrt{{x}^{2}-4x}$的單調(diào)增區(qū)間為[4,+∞),
故答案為:[4,+∞).

點評 本題主要考查復合函數(shù)的單調(diào)性的判斷和應用,注意要先求函數(shù)的定義域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax2+1.
(1)已知函數(shù)f(x)在x=1時有極小值,求實數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)若f(x)≥1在區(qū)間[3,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.對x∈R,f(x)滿足f(x)=-f(x+1),且當x∈(-1,0]時,f(x)=x2+2x,求當x∈[9,11]的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在四面體ABCD中,若E、F、H、I、J、K分別是棱AB、CD、AD、BC、AC、BD的中點,則EF、HI、JK相交于一點G,則點G為四面體ABCD的重心.設A(0,0,2),B(2,0,0),C(0,3,0),D(2,3,2).
(I)重心G的坐標為$(1,\frac{3}{2},1)$;
(II)若△BCD的重心為M,則$\frac{|\overrightarrow{AG}|}{|\overrightarrow{GM|}}$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.命題“?x0>0,2${\;}^{{x}_{0}}$≤0”的否定是( 。
A.?x>0,2x>0B.?x≤0,2x>0C.?x>0,2x<0D.?x≤0,2x<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)y=y1+y2,y1與x2成正比例函數(shù),y2與x成反比例函數(shù),且當x=1時,y=3;當x=-1時,y=1,求x=3時y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-4ax+5,x∈[1,4].
(1)當a=1時,求函數(shù)f(x)的最小值與最大值;
(2)求實數(shù)a的取值范圍,使兩數(shù)y=f(x)在區(qū)間[1,4]上是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若三次方程ax3+bx2+cx+d=0的三個不同實根x1,x2,x3滿足;x1+x2+x3=0,x1x2x3=0,則下列關系式中恒成立的是( 。
A.ac=0B.ac<0C.ac>0D.a+c>0
E.a+c<0         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知a<0,函數(shù)f(x)=ax2+bx+c,若x0滿足2ax+b=0,則下列必為真命題的是(  )
A.?x∈R,f(x)>f(x0B.?x∈R,f(x-1)≥f(x0C.?x∈R,f(x)≤f(x0D.?x∈R,f(x+1)≥f(x0

查看答案和解析>>

同步練習冊答案