10.已知$sinα=\frac{5}{13},cos(α+β)=\frac{3}{5}$,(α、β為銳角),求cosβ,cos(2α+β)的值.

分析 根據(jù)同角的三角函數(shù)的關(guān)系和兩角和差的余弦公式計算即可.

解答 解:由$sinα=\frac{5}{13},cos(α+β)=\frac{3}{5}$,(α、β為銳角)
得$cosα=\frac{12}{13},sin(α+β)=\frac{4}{5}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=$\frac{3}{5}×\frac{12}{13}+\frac{4}{5}×\frac{5}{13}$=$\frac{56}{65}$,
cos(2α+β)=cos[(α+β)+α]=cos(α+β)cosα-sin(α+β)sinα=$\frac{3}{5}×\frac{12}{13}-\frac{4}{5}×\frac{5}{13}$=$\frac{16}{65}$

點評 本題考查了同角的三角函數(shù)的關(guān)系和兩角和差的余弦公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知命題p:x2+2x-3>0;命題q:$\frac{1}{3-x}$>1,若“¬q且p”為真,則x的取值范圍是(-∞,-3)∪(1,2]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.有下列五個命題:
①函數(shù)y=4cos2x,x∈[-10π,10π]不是周期函數(shù);
②已知定義域為R的奇函數(shù)f(x),滿足f(x+3)=f(x),當(dāng)x∈(0,$\frac{3}{2}$)時,f(x)=sinπx,則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是9;
③為了得到函數(shù)y=-cos2x的圖象,可以將函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$;
④已知函數(shù)f(x)=x-sinx,若x1,x2∈[-$\frac{π}{2}$,$\frac{π}{2}}$]且f(x1)+f(x2)>0,則x1+x2>0;
⑤設(shè)曲線f(x)=acosx+bsinx的一條對稱軸為x=$\frac{π}{5}$,則點($\frac{2π}{5}$,0)為曲線y=f($\frac{π}{10}$-x)的一個對稱中心.
其中正確命題的序號是①②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AA1=2,AC=$\sqrt{2}$,過BC的中點D作平面ACB1的垂線,交平面ACC1A1于E,則BE與平面ABB1A1所成角的正切值為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{10}$C.$\frac{{\sqrt{10}}}{10}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系中,已知△PF1F2的兩個頂點為F1(-$\sqrt{2}$a,0),F(xiàn)2($\sqrt{2}$a,0)(a>0),頂點P在曲線C上運動,△PF1F2的內(nèi)切圓與x軸的切點為A,滿足|AF1|-|AF2|=2a.
(1)設(shè)D(m,n)為曲線C上一點,試判斷直線l:mx-ny=a2與曲線C的位置關(guān)系;
(2)過曲線C上任意兩個不同點M,N分作C的切線l1,l2,若l1與l2的交點為E,試探究:對于任意的正實數(shù)a,直線OE(O是原點)是否經(jīng)過MN的中點G?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題p:“?x∈R,有x2-mx-m≤0”則¬p:?x∈R,x2-mx-m>0. 若命題p是假命題,則實數(shù)m的取值范圍是-4<m<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(1)設(shè)x>0,y>0,若$\sqrt{2}$是2x與4y的等比中項,則①x2+2y2的最小值為$\frac{1}{3}$.②$\frac{1}{x}+\frac{1}{y}$的最小值為3+2$\sqrt{2}$.
(2)根據(jù)以上兩個小題的解答,總結(jié)說明含條件等式的求最值問題的解決方法(寫出兩個)
①二次函數(shù)的性質(zhì)②均值不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示(圖中網(wǎng)格的邊長為1個單位),其中俯視圖為扇形,則該幾何體的體積為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{14π}{3}$D.$\frac{16π}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.等比數(shù)列{an}的首項a1>0,公比為q(|q|<1),滿足a2+a3+…+an+…≤$\frac{{a}_{1}}{2}$,則公比q的取值范圍是(-1,0)∪(0,$\frac{1}{3}$].

查看答案和解析>>

同步練習(xí)冊答案