4.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,-1),$\overrightarrow{m}$=$\overrightarrow{a}$+(2t2+3)$\overrightarrow$,$\overrightarrow{n}$=-k$\overrightarrow{a}$+$\frac{1}{t}$$\overrightarrow$,k,t為正實(shí)數(shù),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則k的最小值為2$\sqrt{6}$.

分析 根據(jù)平面向量的坐標(biāo)表示與數(shù)量積運(yùn)算,求出k的解析式,再利用基本不等式即可求出k的最小值.

解答 解:∵向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,-1),
∴$\overrightarrow{m}$=$\overrightarrow{a}$+(2t2+3)$\overrightarrow$=(1,-2t2-3),
$\overrightarrow{n}$=-k$\overrightarrow{a}$+$\frac{1}{t}$$\overrightarrow$=(-k,-$\frac{1}{t}$);
又$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴$\overrightarrow{m}$•$\overrightarrow{n}$=-k+$\frac{1}{t}$(2t2+3)=0,
∴k=$\frac{1}{t}$(2t2+3)=2t+$\frac{3}{t}$≥2$\sqrt{2t•\frac{3}{t}}$=2$\sqrt{6}$,
當(dāng)且僅當(dāng)t=$\frac{\sqrt{6}}{2}$時(shí)“=”成立,
∴k的最小值為2$\sqrt{6}$.
故答案為:2$\sqrt{6}$.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)運(yùn)算問(wèn)題,也考查了利用基本不等式求最值的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若a=2,c=2$\sqrt{3}$,cosA=$\frac{\sqrt{3}}{2}$,且b>c,則b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.?dāng)?shù)列{an}滿足a1=2,an+1an=an-1,n∈N*,Sn是其前n項(xiàng)和,則S100=( 。
A.$\frac{101}{2}$B.$\frac{103}{2}$C.$\frac{105}{2}$D.$\frac{107}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知平面內(nèi)三個(gè)向量$\overrightarrow a$=(1,-1),$\overrightarrow b$=(x,2),$\overrightarrow c$=(2,1),滿足$\overrightarrow a$∥(${\overrightarrow b$+$\overrightarrow c}$).
(Ⅰ)求實(shí)數(shù)x的值;
(Ⅱ)求$\overrightarrow c$在$\overrightarrow a$-$\overrightarrow b$上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若對(duì)任意的實(shí)數(shù)x,f′(x)>$\frac{1}{2}$恒成立,且f(3)=$\frac{9}{2}$,則不等式f(x2-2x)<$\frac{1}{2}$(x2-2x)+3的解集為(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知空間四邊形ABCD如圖中,E、F、G、H分別為AB、BC、CD、DA的中點(diǎn),且∠EFG=90°,判斷四邊形EFGH是什么圖形,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知等差數(shù)列{an}中,a2=-15,a4+a7=5.
求:(1)a1和公差d;
(2)該數(shù)列的前100項(xiàng)的和S100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若數(shù)列{an}滿足logaan+1=1+logaan(a>0,a≠1),已知a為常數(shù),且a1+a2+…+a100=100,則
a2+a4+…+a98+a100=$\frac{100a}{1+a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)y=3x的值域是( 。
A.(0,+∞)B.(1,+∞)C.(-∞,0)∪(0,+∞)D.R

查看答案和解析>>

同步練習(xí)冊(cè)答案