分析 由條件可得{logaan}是首項為logaa1,公差為1的等差數(shù)列,運用等差數(shù)列的通項公式可得logaan=logaa1+n-1,
可得an=a1•an-1,再由等比數(shù)列的求和公式,計算即可得到所求和.
解答 解:由logaan+1=1+logaan,可得:
{logaan}是首項為logaa1,公差為1的等差數(shù)列,
即有l(wèi)ogaan=logaa1+n-1,
可得an=a1•an-1,
由a1+a2+…+a100=100,可得:
$\frac{{a}_{1}(1-{a}^{100})}{1-a}$=100,
即有a1=$\frac{100(1-a)}{1-{a}^{100}}$,
則a2+a4+…+a98+a100=$\frac{{a}_{1}a(1-{a}^{100})}{1-{a}^{2}}$=$\frac{100(1-a)}{1-{a}^{100}}$•$\frac{a(1-{a}^{100})}{1-{a}^{2}}$
=$\frac{100a}{1+a}$.
故答案為:$\frac{100a}{1+a}$.
點評 本題考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com