【題目】扎比瓦卡是2018年俄羅斯世界杯足球賽吉祥物,該吉祥物以西伯利亞平原狼為藍本.扎比瓦卡,俄語意為“進球者”.某廠生產(chǎn)“扎比瓦卡”的固定成本為15000元,每生產(chǎn)一件“扎比瓦卡”需要增加投入20元,根據(jù)初步測算,每個銷售價格滿足函數(shù),其中x是“扎比瓦卡”的月產(chǎn)量(每月全部售完).

1)將利潤表示為月產(chǎn)量的函數(shù);

2)當月產(chǎn)量為何值時,該廠所獲利潤最大?最大利潤是多少?(總收益=總成本+利潤).

【答案】1;(2)當時,該廠所獲利潤最大利潤為30000.

【解析】

1)結(jié)合分段函數(shù),用銷售價格乘以產(chǎn)量,再減去成本,求得利潤的解析式.

2)根據(jù)二次函數(shù)的性質(zhì),求得利潤的最大值以及此時月產(chǎn)量.

1)由題意,當時,

.

時,

,

;

2)當時,;

根據(jù)二次函數(shù)的性質(zhì)可知,當時,

時,為減函數(shù),,

,

∴當時,該廠所獲利潤最大,最大利潤為30000.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱椎中,底面為矩形,平面平面, , 為線段上一點,且,點, 分別為線段, 的中點.

(1)求證 平面;

(2)若平面將四棱椎分成左右兩部分,求這兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為實常數(shù),函數(shù).

(1)求函數(shù)的最值;

(2)設.

(i)討論函數(shù)的單調(diào)性;

(ⅱ) 若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖動點P從單位正方形ABCD頂點A開始,順次經(jīng)B、C、D繞邊界一周,當 表示點P的行程, 表示PA之長時,求y關于x的解析式,并求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.表為10名學生的預賽成績,其中有三個數(shù)據(jù)模糊.

在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則( )

A. 2號學生進入30秒跳繩決賽 B. 5號學生進入30秒跳繩決賽

C. 8號學生進入30秒跳繩決賽 D. 9號學生進入30秒跳繩決賽

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,兩條曲線交于兩點.

(1) 求直線與曲線交點的極坐標;

(2) 已知為曲線 (為參數(shù))上的一動點,設直線與曲線的交點為,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓M與直線相切,且與定圓C外切,

求動圓圓心M的軌跡方程.

求動圓圓心M的軌跡上的點到直線的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點,垂足為E,點FPB上一點,則下列判斷中不正確的是( )﹒

A.平面PACB.C.D.平面平面PBC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國第一高摩天輪南昌之星摩天輪高度為,其中心距地面,半徑為,若某人從最低點處登上摩天輪,摩天輪勻速旋轉(zhuǎn),那么此人與地面的距離將隨時間變化,后達到最高點,從登上摩天輪時開始計時.

1)求出人與地面距離與時間的函數(shù)解析式;

2)從登上摩天輪到旋轉(zhuǎn)一周過程中,有多長時間人與地面距離大于.

查看答案和解析>>

同步練習冊答案