8.已知菱形ABCD,若|$\overrightarrow{AB}$|=1,A=$\frac{π}{3}$,則向量$\overrightarrow{AC}$在$\overrightarrow{AB}$上的投影為$\frac{3}{2}$.

分析 由題意作圖輔助,解菱形,從而求得向量$\overrightarrow{AC}$在$\overrightarrow{AB}$上的投影.

解答 解:∵在菱形ABCD中,A=$\frac{π}{3}$,
∴∠CAB=$\frac{π}{6}$,
又∵|$\overrightarrow{AB}$|=1,
∴|$\overrightarrow{AC}$|=2|$\overrightarrow{AB}$|cos$\frac{π}{6}$=$\sqrt{3}$,
∴向量$\overrightarrow{AC}$在$\overrightarrow{AB}$上的投影為|$\overrightarrow{AC}$|cos$\frac{π}{6}$=$\frac{3}{2}$,
故答案為:$\frac{3}{2}$.

點(diǎn)評 本題考查了數(shù)形結(jié)合的思想方法應(yīng)用及平面向量的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{\frac{x}{2}}-1,0<x≤4}\\{|x-7|,x>4}\end{array}\right.$,若方程f(x)=kx+1有三個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。
A.(-$\frac{1}{7}$,$\frac{1}{2}$)B.(-∞,-$\frac{1}{7}$)∪($\frac{1}{2}$,+∞)C.[-$\frac{1}{7}$,$\frac{1}{2}$)D.(-$\frac{1}{7}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)全集U=R,集合A={x|x2<1},B={x|x2-2x>0},則A∩(∁RB)=[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,在矩形ABCD中,AB=2AD,E,F(xiàn)分別為BC,CD的中點(diǎn),G為EF中點(diǎn),
則$\overrightarrow{AG}$=( 。
A.$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}$B.$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$C.$\frac{3}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AD}$D.$\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,BC=$\sqrt{3}$,∠A=60°,則△ABC周長的最大值$3\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)實(shí)數(shù)p在[0,2]上隨機(jī)地取值,則關(guān)于x的方程x2+2x+p=0有實(shí)根的概率為0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別為a,b,c,且2sin2$\frac{A-B}{2}$sin(A+B)-sin(A-B)cos(A+B)-sinC=1.
(I)求A:
(Ⅱ)若c=6,b=3$\sqrt{2}$,點(diǎn)D在BC邊上,BD=2DC,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x2+2x-3≥0},B={x|-2≤x<2},則A∩B=(  )
A.[-2,-1]B.[-1,2)C.[-2,1]D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式組$\left\{\begin{array}{l}{x-y≤0}&{\;}\\{x+y≥-2}&{\;}\\{x-2y≥-2}&{\;}\end{array}\right.$的解集記為D,若(a,b)∈D,則z=2a-3b的最小值是( 。
A.-4B.-1C.1D.4

查看答案和解析>>

同步練習(xí)冊答案