【題目】已知拋物線過點為其焦點,過且不垂直于軸的直線交拋物線,兩點,動點滿足的垂心為原點.

1)求拋物線的方程;

2)求證:動點在定直線上,并求的最小值.

【答案】(1)(2)證明見解析,的最小值為

【解析】

1)直接將代入拋物線方程即可得到答案;

2)設(shè)直線方程為,聯(lián)立方程,表示出,運用基本不等式即可得到結(jié)論.

1)由題意,將點代入,

,解得,

所以,拋物線的方程為.

2)解析1:(巧設(shè)直線)

證明:設(shè),,聯(lián)立,可得,則有,可設(shè),即,同理,解得,即動點在定直線.

,當(dāng)且僅當(dāng)時取等號.其中,分別為點和點到直線的距離.

2)解析2:(利用向量以及同構(gòu)式)

證明:設(shè),,,聯(lián)立,可得,則有.,,又的垂心,從而,代入化簡得:,同理:,從而可知,,是方程的兩根,所以,所以動點在定直線.

,當(dāng)且僅當(dāng)時取等號.其中分別為點和點到直線的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點為,離心率為.

1)求的標(biāo)準(zhǔn)方程;

2)若動點外一點,且的兩條切線相互垂直,求的軌跡的方程;

3)設(shè)的另一個焦點為,過上一點的切線與(2)所求軌跡交于點,,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個三棱錐,是圓的直徑,是圓上的點,垂直圓所在的平面,,分別是棱的中點.

1)求證:平面;

2)若二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在正常數(shù),使得對任意的,都有成立,我們稱函數(shù)同比不減函數(shù)

1)求證:對任意正常數(shù),都不是同比不減函數(shù);

2)若函數(shù)同比不減函數(shù),求的取值范圍;

3)是否存在正常數(shù),使得函數(shù)同比不減函數(shù),若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為R的函數(shù),若函數(shù)是奇函數(shù),則稱為正弦奇函數(shù).已知 是單調(diào)遞增的正弦奇函數(shù),其值域為R,.

1)已知是正弦奇函數(shù),證明:為方程的解的充要條件是為方程的解;

2)若,求的值;

3)證明:是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角AB,C的對邊分別為ab,c,且2acosB2cb

1)求∠A的大;

2)若△ABC的外接圓的半徑為,面積為,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵職員工作熱情,某公司對每位職員一年來的工作業(yè)績按月進(jìn)行考評打分;年終按照職員的月平均值評選公司最佳職員并給予相應(yīng)獎勵.已知職員一年來的工作業(yè)績分?jǐn)?shù)的莖葉圖如圖所示:

1)根據(jù)職員的業(yè)績莖葉圖求出他這一年的工作業(yè)績的中位數(shù)和平均數(shù);

2)由于職員的業(yè)績高,被公司評為年度最佳職員,在公司年會上通過抽獎形式領(lǐng)取獎金.公司準(zhǔn)備了六張卡片,其中一張卡片上標(biāo)注獎金為6千元,兩張卡片的獎金為4千元,另外三張的獎金為2千元.規(guī)則是:獲獎職員需要從六張卡片中隨機抽出兩張,這兩張卡片上的金額數(shù)之和作為獎金數(shù).求職員獲得獎金6千元的概率;并說明獲得獎金6千元和8千元哪個可能性較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{bn}的前n項和為Tn,且T4=4,b5=6.

1)求數(shù)列{bn}的通項公式;

2)若正整數(shù)n1n2,,nt,滿足5n1n2nt,b3b5,,,,,成等比數(shù)列,求數(shù)列{nt}的通項公式(t是正整數(shù));

3)給出命題:在公比不等于1的等比數(shù)列{an}中,前n項和為Sn,若am,am+2,am+1成等差數(shù)列,則Sm,Sm+2Sm+1也成等差數(shù)列.試判斷此命題的真假,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)將曲線上各點的縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變)得到曲線,求的參數(shù)方程;

2)若,分別是直線與曲線上的動點,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案