7.已知數(shù)列{an}前n項和為Sn,首項為a1,且$\frac{1}{2}$,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=(log2a3n+1)×(log2a3n+4),求證:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$<$\frac{1}{6}$.

分析 (1)由$\frac{1}{2}$,an,Sn成等差數(shù)列,可得2an=$\frac{1}{2}+{S}_{n}$,當(dāng)n=1時,2a1=$\frac{1}{2}+{a}_{1}$,解得a1.當(dāng)n≥2時,2an-2an-1=an,化為:an=2a.利用等比數(shù)列的通項公式即可得出.
(2)bn=$lo{g}_{2}{2}^{(3n-1)}$•log2(3n+2)=(3n-1)(3n-2),可得$\frac{1}{_{n}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$.利用“裂項求和”方法、數(shù)列的單調(diào)性即可證明.

解答 (1)解:∵$\frac{1}{2}$,an,Sn成等差數(shù)列,∴2an=$\frac{1}{2}+{S}_{n}$,
當(dāng)n=1時,2a1=$\frac{1}{2}+{a}_{1}$,解得a1=$\frac{1}{2}$.
當(dāng)n≥2時,2an-2an-1=$\frac{1}{2}+{S}_{n}$-$(\frac{1}{2}+{S}_{n-1})$=an,化為:an=2a.
∴數(shù)列{an}是等比數(shù)列,首項為$\frac{1}{2}$,公比為2.∴an=$\frac{1}{2}×{2}^{n-1}$=2n-2
(2)證明:bn=(log2a3n+1)×(log2a3n+4)=$lo{g}_{2}{2}^{(3n-1)}$•log2(3n+2)=(3n-1)(3n-2),
∴$\frac{1}{_{n}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$.
∴$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$=$\frac{1}{3}[(\frac{1}{2}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{8})$+…+$(\frac{1}{3n-1}-\frac{1}{3n+2})]$=$\frac{1}{3}(\frac{1}{2}-\frac{1}{3n+2})$<$\frac{1}{6}$.

點評 本題考查了遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項公式、“裂項求和”方法、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2$\sqrt{3}$sin2(x+$\frac{π}{4}$)+2cos2x-$\sqrt{3}$,x∈[$\frac{π}{4}$,$\frac{π}{3}$].求
(1)函數(shù)f(x)的最大值、最小值.
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a,b都是實數(shù),那么“|a|>|b|”是“a>|b|”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某集團為了解新產(chǎn)品的銷售情況,銷售部在3月1日至3月5日連續(xù)五天對某個大型批發(fā)市場中該產(chǎn)品一天的銷售量及其價格進行了調(diào)査,其中該產(chǎn)品的價格(元)與銷售量y(萬件)的統(tǒng)計資料如表所示:
日期3月1日3月2日3月3日3月4日3月5日
價格x(元)99.51010.511
銷售量y(萬件)1110865
已知銷售量y(萬件)與價格x(元)之間具有線性相關(guān)關(guān)系,其回歸直線方程為:$\stackrel{∧}{y}$=$\stackrel{∧}$x+40.若該集團將產(chǎn)品定價為10.2元,預(yù)測該批發(fā)市場的日銷售量約為( 。
A.7.66萬件B.7.86萬件C.8.06萬件D.7.36萬件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知首項為1的正項數(shù)列{an}滿足an+12+an2<$\frac{5}{2}{a_{n+1}}{a_n}$,n∈N*,Sn為數(shù)列{an}的前n項和.
(1)若a2=$\frac{3}{2}$,a3=x,a4=4,求x的取值范圍;
(2)設(shè)數(shù)列{an}是公比為q的等比數(shù)列,若$\frac{1}{2}{S_n}$<Sn+1<2Sn,n∈N*,求q的取值范圍;
(3)若a1,a2,…,ak(k≥3)成等差數(shù)列,且a1+a2+…+ak=120,求正整數(shù)k的最小值,以及k取最小值時相應(yīng)數(shù)列a1,a2,…,ak

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(-1,0).是否存在常數(shù)a,b,c,使不等式x≤f(x)≤$\frac{1+x^2}{2}$,對?x∈R都成立?若存在,求出a,b,c的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}的通項公式為an=$\frac{3}{2n-7}$,記數(shù)列{an}的前n項和為Sn,則使Sn≤0成立的n的最大值為( 。
A.4B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.2016年是我國重點打造“智慧城市”的一年,主要在“智慧技術(shù)、智慧產(chǎn)業(yè)、智慧應(yīng)用、智慧服務(wù)、智慧治理、智慧人文、智慧生活”7個方面進行智慧化.現(xiàn)假設(shè)某一城市目前各項指標(biāo)分?jǐn)?shù)x(滿分10分)與智慧城市級別y(級)的有關(guān)數(shù)據(jù)如表:
 項目 智慧技術(shù)智慧產(chǎn)業(yè)  智慧應(yīng)用智慧服務(wù)  智慧治理智慧人文  智慧生活
 指標(biāo)分?jǐn)?shù)x 6.8 7 6.8 6.8 7.2 7 7.4
 智慧級別y 8.8 9.19.2  8.89.1 
(1)請根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)從智慧城市級別的7項指標(biāo)中隨機抽取1項指標(biāo),級別在區(qū)間[9.1,10)內(nèi)記10分,在區(qū)間[9,9.1)內(nèi)記6分,在區(qū)間[8,9)內(nèi)記5分.現(xiàn)從中隨機抽取2項指標(biāo)考查,記得分總和為ξ,求ξ的分布列與數(shù)學(xué)期望.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x)}({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}的前n項和為Sn,且an=$\frac{n•{2}^{n}-{2}^{n+1}}{(n+1)({n}^{2}+2n)}$(n∈N+),則Sn=$\frac{{2}^{n+1}}{(n+1)(n+2)}$-1.

查看答案和解析>>

同步練習(xí)冊答案