19.已知數(shù)列{an}的通項公式為an=$\frac{3}{2n-7}$,記數(shù)列{an}的前n項和為Sn,則使Sn≤0成立的n的最大值為( 。
A.4B.5C.6D.8

分析 an=$\frac{3}{2n-7}$,數(shù)列{an}的前n項和為Sn=$-\frac{3}{5}$-1-3+…+$\frac{3}{2n-7}$,由于Sn+1-Sn=$\frac{3}{2n-5}$,可得:n≤2時,Sn+1<Sn;n≥3時,Sn+1>Sn.經(jīng)過計算即可得出.

解答 解:∵an=$\frac{3}{2n-7}$,
∴數(shù)列{an}的前n項和為Sn=$-\frac{3}{5}$-1-3+…+$\frac{3}{2n-7}$,
可得:Sn+1-Sn=$\frac{3}{2n-5}$,
n≤2時,Sn+1<Sn;n≥3時,Sn+1>Sn
∴S1>S2>S3<S4<S5<S6<…,
S1=$-\frac{3}{5}$<0,S2<0,S3=-$\frac{23}{5}$<0,S4=-$\frac{8}{5}$<0,S5=$-\frac{3}{5}$<0,S6=0,n≥7時,Sn>0.
則使Sn≤0成立的n的最大值為6.
故選:C.

點評 本題考查了遞推關(guān)系、數(shù)列的單調(diào)性、分類討論方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義在區(qū)間[-1,1]上的函數(shù)f(x)=$\sqrt{1+{x}^{2}}$,設(shè)任意x1,x2∈[-1,1],且x1≠x2.求證:|f(x1)-f(x2)|<|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)g(x)=x-1,函數(shù)f(x)滿足f(x+1)=-2f(x)-1,當(dāng)x∈(0,1]時,f(x)=x2-x,對于?x1∈(1,2],?x2∈R,則(x1-x22+(f(x1)-g(x2))2的最小值為( 。
A.$\frac{1}{2}$B.$\frac{49}{128}$C.$\frac{81}{128}$D.$\frac{125}{128}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}前n項和為Sn,首項為a1,且$\frac{1}{2}$,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=(log2a3n+1)×(log2a3n+4),求證:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖所示的程序框圖,若輸入n的值為5,則輸出s的值為( 。
A.7B.8C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,使用時需要用清水清洗干凈,如表是用清水x(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克)的統(tǒng)計表:
x12345
y5854392910
(Ⅰ)在如圖的坐標(biāo)系中,描出散點圖,并判斷變量x與y的相關(guān)性;
(Ⅱ)若用解析式$\widehat{y}$=cx2+d作為蔬菜農(nóng)藥殘量$\widehat{y}$與用水量x的回歸方程,令ω=x2,計算平均值$\overline{ω}$和$\overline{y}$,完成如下表格,求出$\widehat{y}$與x回歸方程.(c,d精確到0.01)
ω1491625
y5854392910
ωi-$\overline{ω}$
yi-$\overline{y}$
(Ⅲ)對于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請估計需要多少千克的清水洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù)$\sqrt{5}$≈2.236).
(附:線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中系數(shù)計算公式分別為:
$\widehat$=$\frac{\sum_{i-1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,AB=AC=1,∠BAC=90,點D是棱B1C1的中點.
(1)求證:AB1∥平面A1DC;
(2)求證:A1D⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)f(x)=$\left\{\begin{array}{l}2{e^{x-1}}\;,x<3\\{log_3}({x^2}-1),x≥3\end{array}$,則$f(f(\sqrt{10}))$=( 。
A.1B.2C.2eD.2e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知P(x,1)是拋物線x2=2py(p>0)上一點,若P到焦點的距離為3,則p的值為4.

查看答案和解析>>

同步練習(xí)冊答案