A. | 4 | B. | 5 | C. | 6 | D. | 8 |
分析 an=$\frac{3}{2n-7}$,數(shù)列{an}的前n項和為Sn=$-\frac{3}{5}$-1-3+…+$\frac{3}{2n-7}$,由于Sn+1-Sn=$\frac{3}{2n-5}$,可得:n≤2時,Sn+1<Sn;n≥3時,Sn+1>Sn.經(jīng)過計算即可得出.
解答 解:∵an=$\frac{3}{2n-7}$,
∴數(shù)列{an}的前n項和為Sn=$-\frac{3}{5}$-1-3+…+$\frac{3}{2n-7}$,
可得:Sn+1-Sn=$\frac{3}{2n-5}$,
n≤2時,Sn+1<Sn;n≥3時,Sn+1>Sn.
∴S1>S2>S3<S4<S5<S6<…,
S1=$-\frac{3}{5}$<0,S2<0,S3=-$\frac{23}{5}$<0,S4=-$\frac{8}{5}$<0,S5=$-\frac{3}{5}$<0,S6=0,n≥7時,Sn>0.
則使Sn≤0成立的n的最大值為6.
故選:C.
點評 本題考查了遞推關(guān)系、數(shù)列的單調(diào)性、分類討論方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{49}{128}$ | C. | $\frac{81}{128}$ | D. | $\frac{125}{128}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 4 | 5 |
y | 58 | 54 | 39 | 29 | 10 |
ω | 1 | 4 | 9 | 16 | 25 |
y | 58 | 54 | 39 | 29 | 10 |
ωi-$\overline{ω}$ | |||||
yi-$\overline{y}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 2e | D. | 2e2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com