16.在△ABC中,若AC=1,AB=2,A=60°,則BC=$\sqrt{3}$.

分析 根據(jù)余弦定理和題設(shè)中的條件求得BC.

解答 解:由余弦定理得:則由余弦定理可得 BC2=AC2+AB2-2AC•AB•cos∠A,
AC=1,AB=2,A=60°,代入求得:BC=$\sqrt{1+4-2×1×2•\frac{1}{2}}$=$\sqrt{3}$,
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查了余弦定理的應(yīng)用.屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓C1:(x-2)2+(y-1)2=4與圓C2:x2+(y-2)2=9相交,則交點(diǎn)連成的直線的方程為x+2y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.寫出($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)6的展開式的第3項(xiàng),以及常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.單位向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,$\overrightarrow{c}$=m$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrowlrhz5lp$=2$\overrightarrow{a}$-m$\overrightarrow$,且$\overrightarrow{c}$⊥$\overrightarrowhb97l57$,則m的值是( 。
A.0B.1或-2C.-1或2D.-1+$\sqrt{3}$或-1-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.①某座大橋一天經(jīng)過的中華牌轎車的輛數(shù)為X;
②某網(wǎng)站中歌曲《愛我中華》一天內(nèi)被點(diǎn)擊的次數(shù)為X;
③射手對(duì)目標(biāo)進(jìn)行射擊,擊中目標(biāo)得1分,未擊中目標(biāo)得0分,用X表示該射手在一次射擊中的得分.
上述問題中的X是離散型隨機(jī)變量的是(  )
A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2),k為何值時(shí)下列各式成立?
(1)(k$\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-3$\overrightarrow$);
(2)(k$\overrightarrow{a}$+$\overrightarrow$)∥($\overrightarrow{a}$-3$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若x>0,y>0,則$\frac{x}{x+2y}+\frac{y}{x}$的最小值為$\sqrt{2}-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)A,B,C,D是空間四個(gè)不共面的點(diǎn),以$\frac{1}{2}$的概率在每對(duì)點(diǎn)之間一條邊,任意兩對(duì)點(diǎn)之間是否連邊是相互獨(dú)立的,則A,B可用(一條邊或若干條邊組成的)空間折線連接的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在數(shù)2與1之間插入10個(gè)數(shù),使這12個(gè)數(shù)成遞減的等差數(shù)列,則公差為-$\frac{1}{11}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案