11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^{x+1}},x≤0\\-log{\;}_{2}({x+1})+2,x>0\end{array}$,且f(a)=-1,則f(6-a)=(  )
A.1B.2C.3D.4

分析 根據(jù)分段函數(shù)的表達(dá)式可判斷a>0,代入表達(dá)式可得a=7,進(jìn)而求出f(6-a)=f(-1)=20=1,

解答 解:∵f(a)=-1,
∴a>0,
-log2(a+1)+2=-1,
∴a=7.
f(6-a)=f(-1)=20=1,
故選:A.

點(diǎn)評(píng) 考查了分段函數(shù)的應(yīng)用,屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率e=$\frac{\sqrt{3}}{2}$,經(jīng)過(guò)橢圓E的下頂點(diǎn)A和右焦點(diǎn)F的直線l的圓C:x2+(y-2b)2=$\frac{27}{4}$相切.
(1)求橢圓E的方程;
(2)若直線m與l垂直,且交橢圓E與P、Q兩點(diǎn),當(dāng)$\overrightarrow{OP}•\overrightarrow{OQ}=-\frac{1}{13}$(O是坐標(biāo)原點(diǎn))時(shí),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知拋物線x2=2py(p>0)的頂點(diǎn)到焦點(diǎn)的距離為1,過(guò)點(diǎn)P(0,p)作直線與拋物線交于A(x1,y1),
B(x2,y2)兩點(diǎn),其中x1>x2
(1)若直線AB的斜率為$\frac{1}{2}$,過(guò)A,B兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程;
(2)若$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,是否存在異于點(diǎn)P的點(diǎn)Q,使得對(duì)任意λ,都有$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-λ$\overrightarrow{QB}$),若存在,求Q點(diǎn)坐標(biāo);不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過(guò)其右焦點(diǎn)F作圓x2+y2=a2的兩條切線,切點(diǎn)記作C,D,原點(diǎn)為O,∠COD=$\frac{π}{2}$,則雙曲線的離心率為( 。
A.$\frac{3}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為120°,|x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$(x,y∈R),則|x$\overrightarrow{{e}_{1}}$-y$\overrightarrow{{e}_{2}}$|的取值范圍是[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=lnx-x+$\frac{a}{x}$+1(a∈R).
(1)若曲線y=f(x)在x=1處的切線與y軸垂直,求函數(shù)f(x)的極值;
(2)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在各項(xiàng)為正數(shù)的數(shù)列{an}中,數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$).求a1,a2,a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)集合A={x|ex>$\sqrt{e}$},集合B={x|lgx≤-lg2},則A∪B等于(  )
A.RB.[0,+∞)C.(0,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知變量x,y滿足$\left\{\begin{array}{l}{0≤x≤3}\\{x+y≥0}\\{x-y+3≥0}\end{array}\right.$則z=2x-3y的最大值為15.

查看答案和解析>>

同步練習(xí)冊(cè)答案