已知x2+y2=a2,定點C(c,0).(a>0,c≠a).AB為圓上的動點∠ACB=90°.求AB中點P的軌跡方程.
考點:軌跡方程
專題:計算題,直線與圓
分析:設(shè)P(x,y),則|AB|=2
a2-(x2+y2)
,利用∠ACB=90°,P為AB中點,可得|CP|=
1
2
|AB|,化簡可得AB中點P的軌跡方程.
解答: 解:設(shè)P(x,y),則|AB|=2
a2-(x2+y2)
,
∵∠ACB=90°,P為AB中點,
∴|CP|=
1
2
|AB|,
(x-c)2+y2
=
a2-(x2+y2)
,
∴2x2-2cx+2y2+c2-a2=0,為AB中點P的軌跡方程.
點評:本題考查軌跡方程的求法,考查運算化簡能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x||x+1|<1},B={x|(
1
2
x-2≥0},則圖中陰影部分所表示的集合( 。
A、(-2,0)
B、(-2,-1]
C、(-1,0]
D、(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}滿足a1=1,且an,an+1是凼數(shù)f(x)=x2-bnx+2n的兩個零點.
(1)求{an},{bn}的通項公式;
(2)求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序,則輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩個頂點A,B的坐標(biāo)分別是(-3,0),(3,0),且AC,BC所在直線的斜率之積等于k(k≠0),試探究頂點C的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中角A,B,C所對的邊分別是a,b,c,若a2+b2-c2=
3
ab,則角C為(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足sinAcosC+cosAsinC=2sinBcosA.
(1)求角A的大小;
(2)若a=
3
,S△ABC=
3
3
4
,試證明△ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用0,1,…,9,這十個數(shù)字,可以組成多少個三位整數(shù)?無重復(fù)數(shù)字的三位整數(shù)?小于500的無重復(fù)數(shù)字的三位整數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=ax+blnx-1在點(1,f(1))處的切線為直線y=0
(1)求實數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=
x2
2
-mx+mf(x),其中m為常數(shù).求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案