△ABC中角A,B,C所對的邊分別是a,b,c,若a2+b2-c2=
3
ab,則角C為( 。
A、30°B、60°
C、120°D、150°
考點(diǎn):余弦定理
專題:計(jì)算題,解三角形
分析:利用余弦定理表示出cosC,把已知的等式代入求出cosC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出C的度數(shù).
解答: 解:∵a2+b2-c2=
3
ab,
∴根據(jù)余弦定理得:cosC=
a2+b2-c2
2ab
=
3
2
,
又∵C為三角形的內(nèi)角,
則∠C=30°.
故選:A.
點(diǎn)評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,利用了整體代入的思想,余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點(diǎn),AC⊥BC,且AC=BC.
(1)求證:AM⊥平面EBC;
(2)當(dāng)AC=2時(shí),求三棱錐V E-ABM的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=f(x)滿足f(2-x)=f(2+x),且f(x)=0有且只有17個(gè)根,則這些實(shí)數(shù)根的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求斜率為3,且與圓x2+y2-4x=0相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x2+y2=a2,定點(diǎn)C(c,0).(a>0,c≠a).AB為圓上的動點(diǎn)∠ACB=90°.求AB中點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=2,b=2
2
,B=45°,則A等于( 。
A、30°
B、60°
C、60°或120°
D、30°或150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c過點(diǎn)(0,1)和點(diǎn)(1,-5),且滿足f(x)=f(-2-x).
(1)求二次函數(shù)解析式;
(2)求f(x)≥0時(shí)x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某超市對某商品開展為期兩天的抽獎促銷活動,第一天的活動方案為:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中四個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為15°,邊界忽略不計(jì))即為中獎.
(Ⅰ)求顧客按第一天活動方案抽獎一次中獎的概率;
(Ⅱ)若第二天活動方案為:從裝有3個(gè)白色乒乓球和3個(gè)紅色乒乓球的盒子中一次性摸出2個(gè)乒乓球(球除顏色外不加區(qū)分),如果摸到的是2個(gè)紅色乒乓球,即為中獎.問:某顧客抽獎一次,哪天中獎的可能性大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3},B={3,6,7},則A∪B等于( 。
A、{3}
B、{3,4}
C、{1,2,3,6,7}
D、∅

查看答案和解析>>

同步練習(xí)冊答案