【題目】已知數(shù)列{an}的前n項和為Sn , 且對任意正整數(shù)n,都有an= +2成立.
(1)記bn=log2an , 求數(shù)列{bn}的通項公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項和Tn

【答案】
(1)解:在 中令n=1得a1=8,

因為對任意正整數(shù)n,都有 成立,所以 ,

兩式相減得an+1﹣an= an+1,

所以an+1=4an,

又a1≠0,

所以數(shù)列{an}為等比數(shù)列,

所以an=84n1=22n+1,

所以bn=log2an=2n+1


(2)解:cn= = =

所以


【解析】(1)根據(jù)數(shù)列的遞推公式即可求出數(shù)列{an}為等比數(shù)列,根據(jù)對數(shù)的運算性質(zhì)可得bn=2n+1,(2)根據(jù)裂項求和即可得到答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬在2019年舉行促銷活動,經(jīng)過調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費用)(單位:萬元)滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件. 已知2019年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分).

(1)將該廠家2019年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);

(2)該廠家2019年的年促銷費用投入多少萬元時,廠家利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).

(I)求f(0)的值和實數(shù)m的值;

(II)當(dāng)m=1時,判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明;

(III)若且f(b﹣2)+f(2b﹣2)>0,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為2的菱形, , 為平面外一點,且底面上的射影為四邊形的中心, , 上一點,

(Ⅰ)若上一點,且,求證: 平面;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對于任意的都有,當(dāng)時,則

(1)判斷的奇偶性;

(2)求上的最大值;

(3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市“金!惫珗@欲在長、寬分別為 的矩形地塊內(nèi)開鑿一“撻圓”形水池(如圖),池邊由兩個半橢圓)組成,其中,“撻圓”內(nèi)切于矩形且其左右頂點, 和上頂點構(gòu)成一個直角三角形

(1)試求“撻圓”方程;

(2)若在“撻圓”形水池內(nèi)建一矩形網(wǎng)箱養(yǎng)殖觀賞魚,則該網(wǎng)箱水面面積最大為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為2的正三角形ABC沿x軸滾動,記滾動過程中頂點A的橫、縱坐標(biāo)分別為,且在映射作用下的象,則下列說法中:

映射的值域是;

映射不是一個函數(shù);

映射是函數(shù),且是偶函數(shù);

映射是函數(shù),且單增區(qū)間為,

其中正確說法的序號是___________.

說明:“正三角形ABC沿x軸滾動包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點B為中心順時針旋轉(zhuǎn),當(dāng)頂點C落在x軸上時,再以頂點C為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正三角形ABC可以沿x軸負方向滾動.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為, 為過定點的兩條直線.

(1)若與拋物線均無交點,且,求直線的斜率的取值范圍;

(2)若與拋物線交于兩個不同的點,以為直徑的圓過點,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系上,有一點列P0 , P1 , P2 , P3 , …,Pn1 , Pn , 設(shè)點Pk的坐標(biāo)(xk , yk)(k∈N,k≤n),其中xk、yk∈Z,記△xk=xk﹣xk1 , △yk=yk﹣yk1 , 且滿足|△xk||△yk|=2(k∈N* , k≤n);
(1)已知點P0(0,1),點P1滿足△y1>△x1>0,求P1的坐標(biāo);
(2)已知點P0(0,1),△xk=1(k∈N* , k≤n),且{yk}(k∈N,k≤n)是遞增數(shù)列,點Pn在直線l:y=3x﹣8上,求n;
(3)若點P0的坐標(biāo)為(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.

查看答案和解析>>

同步練習(xí)冊答案