【題目】某廠家擬在2019年舉行促銷活動(dòng),經(jīng)過(guò)調(diào)查測(cè)算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)(單位:萬(wàn)件)與年促銷費(fèi)用()(單位:萬(wàn)元)滿足(為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷量只能是1萬(wàn)件. 已知2019年生產(chǎn)該產(chǎn)品的固定投入為6萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入12萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分).
(1)將該廠家2019年該產(chǎn)品的利潤(rùn)萬(wàn)元表示為年促銷費(fèi)用萬(wàn)元的函數(shù);
(2)該廠家2019年的年促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家利潤(rùn)最大?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)上購(gòu)物逐步走進(jìn)大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購(gòu),大家約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去哪家購(gòu)物,擲出點(diǎn)數(shù)為5或6的人去淘寶網(wǎng)購(gòu)物,擲出點(diǎn)數(shù)小于5的人去京東商場(chǎng)購(gòu)物,且參加者必須從淘寶和京東商城選擇一家購(gòu)物.
(1)求這4人中恰有1人去淘寶網(wǎng)購(gòu)物的概率;
(2)用ξ、η分別表示這4人中去淘寶網(wǎng)和京東商城購(gòu)物的人數(shù),記X=ξη,求隨機(jī)變量X的分布列與數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真,求的取值范圍.
【答案】
【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.
試題解析:
真
,
真 或
∴
真假
假真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)是在軸上的投影, 為上一點(diǎn),且.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)求過(guò)點(diǎn)且斜率為的直線被所截線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線 的極坐標(biāo)方程是 ,以極點(diǎn)為原點(diǎn) ,極軸為 軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系 中,曲線 的參數(shù)方程為: ( 為參數(shù)).
(1)求曲線 的直角坐標(biāo)方程與曲線 的普通方程;
(2)將曲線 經(jīng)過(guò)伸縮變換 后得到曲線 ,若 分別是曲線 和曲線 上的動(dòng)點(diǎn),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖),其中樣本數(shù)據(jù)分組區(qū)間為, ,…, , .
(1)求頻率分布圖中的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(3)從評(píng)分在的受訪職工中, 隨機(jī)抽取2人,求此2人評(píng)分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家生產(chǎn)一種產(chǎn)品,每生產(chǎn)這種產(chǎn)品 (百臺(tái)),其總成本為萬(wàn)元,其中固定成本為42萬(wàn)元,且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為15萬(wàn)元總成本固定成本生產(chǎn)成本銷售收入萬(wàn)元滿足,假定該產(chǎn)品產(chǎn)銷平衡即生產(chǎn)的產(chǎn)品都能賣掉,根據(jù)上述條件,完成下列問題:
寫出總利潤(rùn)函數(shù)的解析式利潤(rùn)銷售收入總成本;
要使工廠有盈利,求產(chǎn)量的范圍;
工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為2,則輸出v的值為( )
A.210﹣1
B.210
C.310﹣1
D.310
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1: + =1(a>b>0)的離心率為 ,P(﹣2,1)是C1上一點(diǎn).
(1)求橢圓C1的方程;
(2)設(shè)A,B,Q是P分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),平行于AB的直線l交C1于異于P、Q的兩點(diǎn)C,D,點(diǎn)C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為E.證明:直線PD、PE與y軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有an= +2成立.
(1)記bn=log2an , 求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com