【題目】已知點A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點,直線AF的斜率為 ,O為坐標原點.
(Ⅰ)求E的方程;
(Ⅱ)設過點A的直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求l的方程.
【答案】解:(Ⅰ) 設F(c,0),由條件知 ,得 又 ,所以a=2,b2=a2﹣c2=1,故E的方程 .
(Ⅱ)依題意當l⊥x軸不合題意,故設直線l:y=kx﹣2,設P(x1 , y1),Q(x2 , y2)
將y=kx﹣2代入 ,得(1+4k2)x2﹣16kx+12=0,
當△=16(4k2﹣3)>0,即 時,
從而
又點O到直線PQ的距離 ,所以△OPQ的面積 = ,
設 ,則t>0, ,
當且僅當t=2,k=± 等號成立,且滿足△>0,
所以當△OPQ的面積最大時,l的方程為:y= x﹣2或y=﹣ x﹣2
【解析】(Ⅰ)通過離心率得到a、c關系,通過A求出a,即可求E的方程;(Ⅱ)設直線l:y=kx﹣2,設P(x1 , y1),Q(x2 , y2)將y=kx﹣2代入 ,利用△>0,求出k的范圍,利用弦長公式求出|PQ|,然后求出△OPQ的面積表達式,利用換元法以及基本不等式求出最值,然后求解直線方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:(x+1)(x﹣5)≤0,命題q:1﹣m≤x<1+m(m>0).
(1)若p是q的充分條件,求實數(shù)m的取值范圍;
(2)若m=5,“p∨q”為真命題,“p∧q”為假命題,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有甲乙兩船,其中甲船在某島B的正南方A處,A與B相距7公里,甲船自A處以4公里/小時的速度向北方向航行,同時乙船以6公里/小時的速度自B島出發(fā),向北60°西方向航行,問分鐘后兩船相距最近.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=bax(a>0,且a≠1,b∈R)的圖象經(jīng)過點A(1,6),B(3,24).
(1)設g(x)= ﹣ ,確定函數(shù)g(x)的奇偶性;
(2)若對任意x∈(﹣∞,1],不等式( )x≥2m+1恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)g(x)=mx2﹣2mx+n+1(m>0)在區(qū)間[0,3]上有最大值4,最小值0.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)設f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù),且曲線在點處的切線與直線平行.
(1)求的值;
(2)判斷函數(shù)的單調性;
(3)求證:當時,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處的切線方程為.
(1)求的值;
(2)若對任意的,都有成立,求的取值范圍;
(3)若函數(shù)的兩個零點為,試判斷的正負,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設直線l:3x+4y+4=0,圓C:(x﹣2)2+y2=r2(r>0),若圓C上存在兩點P,Q,直線l上存在一點M,使得∠PMQ=90°,則r的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com