5.若某程序框圖如圖所示,則該程序運(yùn)行后輸出的i值為8.

分析 根據(jù)框圖流程依次計(jì)算運(yùn)行的結(jié)果,直到滿足條件n=1,求得此時(shí)i的值,即可得解.

解答 解:由程序框圖知:程序第一次運(yùn)行n=10,i=2;
第二次運(yùn)行n=5,i=3;
第三次運(yùn)行n=3×5+1=16,i=4;
第四次運(yùn)行n=8,i=5;
第五次運(yùn)行n=4,i=6;
第六次運(yùn)行n=2,i=7;
第七次運(yùn)行n=1,i=8.
滿足條件n=1,程序運(yùn)行終止,輸出i=8.
故答案為:8.

點(diǎn)評(píng) 本題考查了循環(huán)結(jié)構(gòu)與選擇結(jié)構(gòu)相結(jié)合的程序框圖,根據(jù)框圖流程依次計(jì)算運(yùn)行的結(jié)果是解答此類問題的常用方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.$\underset{lim}{x→1}$$\frac{{x}^{n-1}}{x-1}$=( 。
A.0B.1C.nD.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{ln(1+x)}{x}$(x>0)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:f(x)$>\frac{2}{x+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.將一顆質(zhì)地均勻的骰子投擲兩次,第一次出現(xiàn)的點(diǎn)數(shù)記為a,第二次出現(xiàn)的點(diǎn)數(shù)記為b,設(shè)任意投擲兩次使直線l1:x+ay=3,l2:bx+6y=3平行的概率為P1,不平行的概率為P2,若點(diǎn)(P1,P2)在圓(x-m)2+y2=$\frac{65}{72}$的內(nèi)部,則實(shí)數(shù)m的取值范圍是(-$\frac{1}{6}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=$\sqrt{3}$sinx+3cosx+1(x∈[π,2π])的單調(diào)遞增區(qū)間是[$\frac{7π}{6}$.2π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若復(fù)數(shù)z滿足$\frac{1+i}{z}$=i7(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.2015年12月10日,我國(guó)科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎(jiǎng),以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國(guó)內(nèi)青蒿素人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長(zhǎng)勢(shì)與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為x,y,z,并對(duì)它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)ω=x+y+z的值評(píng)定人工種植的青蒿的長(zhǎng)勢(shì)等級(jí),若ω≥4,則長(zhǎng)勢(shì)為一級(jí);若2≤ω≤3,則長(zhǎng)勢(shì)為二級(jí);若0≤ω≤1,則長(zhǎng)勢(shì)為三級(jí),為了了解目前人工種植的青蒿的長(zhǎng)勢(shì)情況,研究人員隨即抽取了10塊青蒿人工種植地,得到如表結(jié)果:
種植地編號(hào)A1A2A3A4A5
(x,y,z)(0,1,0)(1,2,1)(2,1,1)(2,2,2)(0,1,1)
種植地編號(hào)A6A7A8A9A10
(x,y,z)(1,1,2)(2,1,2)(2,0,1)(2,2,1)(0,2,1)
(1)在這10塊青蒿人工種植地中任取兩地,求這兩地的空氣濕度的指標(biāo)z相同的概率;
(2)從長(zhǎng)勢(shì)等級(jí)是一級(jí)的人工種植地中任取一地,其綜合指標(biāo)為m,從長(zhǎng)勢(shì)等級(jí)不是一級(jí)的人工種植地中任取一地,其綜合指標(biāo)為n,記隨機(jī)變量X=m-n,求X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)數(shù)列{an}是首項(xiàng)為1,公差為$\frac{1}{2}$的等差數(shù)列,Sn是數(shù)列{an}的前n項(xiàng)的和,
(1)若am,15,Sn成等差數(shù)列,lgam,lg9,lgSn也成等差數(shù)列(m,n為整數(shù)),求am,Sn和m,n的值;
(2)是否存在正整數(shù)m,n(n≥2),使lg(Sn-1+m),lg(Sn+m),lg(Sn+1+m)成等差數(shù)列?若存在,求出m,n的所有可能值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,a1=-1,且n(an+1-an)=2-an+1(n∈N*),現(xiàn)給出下列4個(gè)結(jié)論:
①數(shù)列{an}是遞增數(shù)列;
②數(shù)列{an}是遞減數(shù)列;
③存在n∈N*,使得(2-a1)+(2-a2)+…+(2-an)>2016;
④存在n∈N*,使得(2-a12+(2-a22+…+(2-an2>2016;
其中正確的結(jié)論的序號(hào)是②③(請(qǐng)寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案