A. | 大于0 | B. | 等于0 | ||
C. | 小于0 | D. | 大于0,等于0,小于0都有可能 |
分析 設(shè)P(x1,y1)、Q(x2,y2),利用斜率公式得到k1+k2=$\frac{{y}_{1}}{{x}_{1}+2}$+$\frac{{y}_{1}}{{x}_{1}-2}$=$\frac{{x}_{1}}{2{y}_{1}}$;同理可得k3+k4=-$\frac{{x}_{2}}{2{y}_{2}}$,結(jié)合O、P、Q三點(diǎn)共線即可得出k1+k2+k3+k4的值.
解答 解:由題意,O、P、Q三點(diǎn)共線.
設(shè)P(x1,y1)、Q(x2,y2),
點(diǎn)P在雙曲線$\frac{x^2}{4}-{y^2}$=1上,有x12-4=4y12.
所以k1+k2=$\frac{{y}_{1}}{{x}_{1}+2}$+$\frac{{y}_{1}}{{x}_{1}-2}$=$\frac{{x}_{1}}{2{y}_{1}}$. ①
又由點(diǎn)Q在橢圓$\frac{x^2}{4}+{y^2}$=1上,有x22-4=-2y22.
同理可得k3+k4=-$\frac{{x}_{2}}{2{y}_{2}}$②
∵O、P、Q三點(diǎn)共線.
∴$\frac{{x}_{1}}{{y}_{1}}$=$\frac{{x}_{2}}{{y}_{2}}$.
由①、②得k1+k2+k3+k4=0.
故選B.
點(diǎn)評(píng) 本小題主要考查橢圓的幾何性質(zhì)、雙曲線的幾何性質(zhì)、圓錐曲線的綜合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | $\frac{1}{8}$ | C. | 3 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com