解關(guān)于x的不等式:|2x+a︳>b,b>0.
考點(diǎn):絕對值不等式的解法
專題:選作題,不等式
分析:利用絕對值的幾何意義,化簡即可得出結(jié)論.
解答: 解:∵|2x+a︳>b,b>0,
∴2x+a<-b或2x+a>b,
∴x<
a+b
2
或x>
b-a
2

∴解集為{x|x<
a+b
2
或x>
b-a
2
}.
點(diǎn)評:本題考查絕對值的幾何意義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若兩個(gè)函數(shù)的圖象僅經(jīng)過若干次平移后能夠重合,則稱這兩個(gè)函數(shù)為“同形”函數(shù).給出下列三個(gè)函數(shù):f1(x)=
2
sin2x,f2(x)=sinx+cosx,f3(x)=
2
cos(x+
π
6
)+1,則( 。
A、f1(x),f2(x),f3(x)兩兩為“同形”函數(shù)
B、f1(x),f2(x)為“同形”函數(shù),且它們與f3(x)不為“同形”函數(shù)
C、f2(x),f3(x)為“同形”函數(shù),且它們與f1(x)不為“同形”函數(shù)
D、f1(x),f2(x),f3(x)兩兩不為“同形”函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex,g(x)=
1
a
lnx,其中a>0.若函數(shù)f(x)和 g(x)在它們圖象與坐標(biāo)軸交點(diǎn)處的切線互相平行.
(1)求這兩平行切線間的距離;
(2)若對于任意x∈R,f(x)≥mx+1(其中m>0)恒成立,求m的取值范圍
(3)當(dāng)x0∈(0,+∞),把|f(x0)-g(x0)|的值稱為函數(shù)f(x)和 g(x)在x0處的縱差.求證:函數(shù)f(x)和g(x)所有縱差都大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2cos(π-x)cos(
π
2
+x)+sin2xtanx.
(1)求f(x)的最小正周期;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xe -
x
a
(其中a∈R,a≠0,e=2.718…為自然對數(shù)的底數(shù)).
(1)求f(x)在[0,1]上的最大值;
(2)設(shè)函數(shù)g(x)=kx2+(k-15)x-15(k>1,k∈N+),函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若當(dāng)x>0時(shí),2f′(-ax)>g(x)恒成立,求最大的正整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在去年雪災(zāi)中,有關(guān)部門為了動(dòng)員社會(huì)力量支援災(zāi)區(qū)建設(shè),特舉辦大型抽獎(jiǎng)獻(xiàn)愛心活動(dòng),規(guī)則如下:在袋中裝有黑、白各4個(gè)小球,這些小球除顏色外完全相同,每位參加者購買一張10元愛心券,然后一次性從袋中摸出4個(gè)小球,中獎(jiǎng)方案如下表:
摸出4個(gè)小球的情形資金
恰有4個(gè)白色小球20元
恰有3個(gè)白色小球4元
其它情形1元
(1)求某位參加者摸獎(jiǎng)一次獲得的資金數(shù)ξ的期望(結(jié)果保留三個(gè)有效數(shù)字);
(2)假定有100萬人次參加這項(xiàng)活動(dòng),分析這次活動(dòng)大約可以募集到多少資金?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
3
x3+
b
2
x2-a2x(a>0)
(1)若函數(shù)f(x)的圖象在x=2處的切線方程為y=7x-20,求a、b的值;
(2)設(shè)x1,x2是函數(shù)f(x)的兩個(gè)極值點(diǎn),且|x1|+|x2|=2,試用a表示b2;
(3)求證:|b|≤
4
3
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=1,d>0,且它的第2項(xiàng),第5項(xiàng),第14項(xiàng)成等比,分別是等比數(shù)列{bn}的第2項(xiàng),第3項(xiàng),第4項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對任意n∈N*均有
c1
b1
+
c2
b2
+…+
cn
bn
=an成立,求c1+c2+…+cn(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一條直線的投影與另一條直線垂直,那么這兩條直線垂直.
 
.(判斷對錯(cuò))

查看答案和解析>>

同步練習(xí)冊答案