分析 函數(shù)f(x)可化為t+$\frac{tsinx+x}{2{x}^{2}+cosx}$,令g(x)=$\frac{tsinx+x}{2{x}^{2}+cosx}$,則g(-x)=-g(x),設(shè)g(x)的最大值為M,最小值為N,則M+N=0,由f(x)的最大值和最小值,解方程即可得到t=1.
解答 解:函數(shù)f(x)=$\frac{{2t{x^2}+\sqrt{2}tsin(x+\frac{π}{4})+x}}{{2{x^2}+cosx}}$=$\frac{2{t}^{2}+\sqrt{2}t(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx)+x}{2{x}^{2}+cosx}$
=$\frac{t(2{x}^{2}+cosx)+(tsinx+x)}{2{x}^{2}+cosx}$
=t+$\frac{tsinx+x}{2{x}^{2}+cosx}$,
令g(x)=$\frac{tsinx+x}{2{x}^{2}+cosx}$,
則g(-x)=$\frac{-tsinx-x}{2{x}^{2}+cosx}$=-g(x),
設(shè)g(x)的最大值為M,最小值為N,
則M+N=0,
即有t+M=a,t+N=b,
a+b=2t+M+N=2t=2,
解得t=1.
故答案為:1.
點評 本題考查函數(shù)的奇偶性及運用,考查三角函數(shù)的誘導(dǎo)公式和運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{20}{17}$ | B. | $\frac{38}{29}$ | C. | 1 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com