10.如圖,在四棱錐P-ABCD中,已知AB⊥AD,AD⊥DC.PA⊥底面ABCD,且AB=2,PA=AD=DC=1,M為PC的中點(diǎn),N在AB上,且BN=3AN.
(1)求證:平面PAD⊥平面PDC;
(2)求證:MN∥平面PAD;
(3)求三棱錐C-PBD的體積.

分析 (1)由PA⊥底面ABCD得PA⊥CD,又CD⊥AD得CD⊥平面PAD,故而平面PAD⊥平面PDC;
(2)取PD的中點(diǎn)E,連接ME,AE,則可證四邊形AEMN是平行四邊形,于是MN∥AE,得出MN∥平面PAD;
(3)以三角形BCD為棱錐的底面,則棱錐的高為PA,代入體積公式計(jì)算即可.

解答 (1)證明:∵PA⊥底面ABCD,CD?底面ABCD,
∴PA⊥CD;
又AD⊥DC,AD?平面PAD,PA?平面PAD,PA∩AD=A,
∴CD⊥平面PAD,又CD?平面PDC,
∴平面PAD⊥平面PDC.
(2)證明:取PD的中點(diǎn)E,連接ME,AE,
∵M(jìn),E分別是PC,PD的中點(diǎn),
∴ME∥CD,且$ME=\frac{1}{2}CD$=$\frac{1}{2}$,
又AB⊥AD,AD⊥DC,BN=3AN,AB=2,
∴AN∥CD,AN=$\frac{1}{4}AB$=$\frac{1}{2}$,
∴EM∥AN,EM=AN,
∴四邊形MEAN為平行四邊形,
∴MN∥AE,又AE?平面PAD,MN?平面PAD,
∴MN∥平面PAD.
(3)解:∵PA⊥底面ABCD,S△BCD=$\frac{1}{2}×DC×AD$=$\frac{1}{2}×1×1=\frac{1}{2}$,
∴VC-PBD=VP-BCD=$\frac{1}{3}$S△BCD•PA=$\frac{1}{3}×\frac{1}{2}×1=\frac{1}{6}$.

點(diǎn)評 本題考查了線面平行,線面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若復(fù)數(shù)z滿足z(2+i)=$\frac{10}{1+i}$,則z的共軛復(fù)數(shù)$\overline z$=( 。
A.1+3iB.1-3iC.3+iD.3-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若$\overrightarrow{OA}$=(2,8),$\overrightarrow{OB}$=(-7,2),則$\overrightarrow{AB}$=(-9,-6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)寫出函數(shù)f(x)的解析式及x0的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其長軸長是其短軸長的2倍,橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為4.
(Ⅰ)求橢圓C的方程.
(Ⅱ)設(shè)曲線C的上、下頂點(diǎn)分別為A、B,點(diǎn)P在曲線C上,且異于點(diǎn)A、B,直線AP,BP與直線l:y=-2分別交于點(diǎn)M,N.
(1)設(shè)直線AP,BP的斜率分別為k1,k2,求證:k1k2為定值;
(2)求線段MN長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若cos(75°+α)=$\frac{1}{3}$,則cos(30°-2α)的值為(  )
A.$\frac{4\sqrt{2}}{9}$B.-$\frac{4\sqrt{2}}{9}$C.$\frac{7}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.復(fù)數(shù)Z=(m2+3m-4)+(m2-10m+9)i(m∈R),
(1)當(dāng)m=0時,求復(fù)數(shù)Z的模;
(2)當(dāng)實(shí)數(shù) m為何值時復(fù)數(shù)Z為純虛數(shù);
(3)當(dāng)實(shí)數(shù) m為何值時復(fù)數(shù)Z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知m∈R,i為虛數(shù)單位,則“m=1”是“復(fù)數(shù)z=m2-1+(m+1)i為純虛數(shù)”的(  )
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b),滿足f′(x1)=f′(x2)=$\frac{f(a)-f(b)}{a-b}$,則稱數(shù)x1,x2為[a,b]上的“對望數(shù)”,函數(shù)f(x)為[a,b]上的“對望函數(shù)”,給出下列四個命題:
(1)二次函數(shù)f(x)=x2+mx+n在任意區(qū)間[a,b]上都不可能是“對望函數(shù)”;
(2)函數(shù)f(x)=$\frac{1}{3}$x3-x2+2是[0,2]上的“對望函數(shù)”;
(3)函數(shù)f(x)=x+sinx是[$\frac{π}{6}$,$\frac{11π}{6}$]上的“對望函數(shù)”;
(4)f(x)為[a,b]上的“對望函數(shù)”,則f(x)在[a,b]上不單調(diào)
其中正確命題的序號為(1),(2),(4)(填上所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案